共查询到20条相似文献,搜索用时 31 毫秒
1.
Salari M Aboutalebi SH Chidembo AT Nevirkovets IP Konstantinov K Liu HK 《Physical chemistry chemical physics : PCCP》2012,14(14):4770-4779
Here, we report the fabrication of self-organized titania (TiO(2)) nanotube array supercapacitor electrodes through controlled phase transformation of TiO(2), with aerial capacitances as high as 2.6 mF cm(-2), which far exceeds the values so far reported in the literature. The role of phase transformation in the electrochemical charge-discharge behaviour of nanocrystalline TiO(2) nanotubes is investigated and discussed in detail. The ease of synthesis and the exceptional electrochemical properties make these nanotube arrays an alternative candidate for use in energy storage devices. 相似文献
2.
Xing Ji Zhang Weikang Yin Min Zhu Xufei Li Dongdong Song Ye 《Journal of Solid State Electrochemistry》2017,21(8):2349-2354
Journal of Solid State Electrochemistry - Anodic TiO2 nanotube arrays (TNTAs) were found to be a suitable scaffold for the loading of other active materials for supercapacitors. The prepared... 相似文献
3.
We report a facile method to grow multi-sectional TiO2 nanotube arrays consisting of alternating bamboo-shaped and smooth-walled nanotube sections by anodization. Two key factors are necessary for obtaining these morphologies. First, in order to avoid possible disruptions between the conjoint sections of the nanotube, the distribution of hydrogen ions is suggested not to be fiercely disturbed when switching from the first to the second stage. Second, to avoid the disruption of the nanotube at the joint which results from the disparity in diameters between sections, the direct current voltage is set to be the maximum of the square wave voltage. These newly developed TiO2 nanotube arrays are expected to have potential applications in solar cells, drug release and delivery systems. 相似文献
4.
P. Pu H. Cachet E. Ngaboyamahina E. M. M. Sutter 《Journal of Solid State Electrochemistry》2013,17(3):817-828
Two types of TiO2 nanotubular arrays were obtained by anodisation of a titanium foil, in two different solutions containing fluoride ions. For the first type which has rough tube walls, impedance measurements in the dark showed the presence of a localised surface state which was related to adsorbed molecular water. Under UV illumination, this adsorbed molecular water was photo-dissociated. Moreover, an increase of 2 orders of magnitude for the limiting capacitance of the space charge layer was observed, simultaneously with the disappearance of the localised state and with a 100-time increase of the carrier density associated with hydrogen insertion. The second type of layer was characterised by smoother tube walls, a high doping level (1020?cm?3) in the dark, a lack of localised states and no long-lasting photo-induced effect. In this case, the width of the space charge layer became rapidly higher than the half-thickness of the tube walls, when the applied potential increased. Therefore, the walls were progressively depleted under anodic polarisation, passing from a situation where the tubes were totally active in the cathodic range towards a situation where the contribution of the tube walls could be neglected. 相似文献
5.
Chen Qinlei Xia Zhengbin Zhang Yanhong Wang Shumin 《Journal of Solid State Electrochemistry》2019,23(12):3399-3408
Journal of Solid State Electrochemistry - Polyaniline/diazonium salt/TiO2 nanotube arrays (PANI/DZ/TiO2 NAs), as a supercapacitor electrode material, are fabricated by two-step anodic oxidation of... 相似文献
6.
Chanmanee W Watcharenwong A Chenthamarakshan CR Kajitvichyanukul P de Tacconi NR Rajeshwar K 《Journal of the American Chemical Society》2008,130(3):965-974
This paper describes TiO2 nanotube arrays prepared by anodic oxidation of Ti substrates using pulse voltage waveforms. Voltages were pulsed between 20 and -4 V or between 20 and 0 V with varying durations from 2 to 16 s at the lower limit of the pulse waveform. Ammonium fluoride or sodium fluoride (and mixtures of both) was used as the electrolyte with or without added medium modifier (glycerol, ethylene glycol, or poly (ethylene glycol) (PEG 400)) in these experiments. The pulse waveform was optimized to electrochemically grow TiO2 nanotubes and chemically etch their walls during its cathodic current flow regime. The resultant TiO2 nanotube arrays showed a higher quality of nanotube array morphology and photoresponse than samples grown via the conventional continuous anodization method. Films grown with a 20 V/-4 V pulse sequence and pulse duration of 2 s at its negative voltage limit afforded a superior photoresponse compared to other pulse durations. Specifically, the negative voltage limit of the pulse (-4 V) and its duration promote the adsorption of NH4+ species that in turn inhibits chemical attack of the growing oxide nanoarchitecture by the electrolyte F- species. The longer the period of the pulse at the negative voltage limit, the thicker the nanotube walls and the shorter the nanotube length. At variance, with 0 V as the low voltage limit, the longer the pulse duration, the thinner the oxide nanotube wall, suggesting that chemical attack by fluoride ions is not counterbalanced by NH3/NH4+ species adsorption, unlike the interfacial situation prevailing at -4 V. Finally, the results from this study provide useful evidence in support of existing mechanistic models for anodic growth and self-assembly of oxide nanotube arrays on the parent metal surface. 相似文献
7.
《Electrochemistry communications》2007,9(9):2441-2447
Titania nanotube arrays were fabricated by anodic oxidation of titanium foil in different electrolytes. The morphology, crystallinity and composition of the as-prepared nanotube arrays were studied by XRD, SEM and EDX. Electrochemical impedance spectroscopy (EIS) was employed to investigate their electrical conductivity and capacitance. Titania nanotube arrays co-adsorbed with horseradish peroxidase (HRP) and thionine chloride (Th) were studied for their sensitivity to hydrogen peroxide by means of cyclic voltammetric and galvanostatic measurements. The experiments showed that TiO2 nanotube arrays possessed appreciably different sensitivities to H2O2 due to their different conductivity. Further experiments revealed that TiO2 nanotubes have noticeably different ability of adsorbing HRP and Th, and the best sensitivity was achieved when the density of HRP is the highest. The TiO2 nanotube arrays fabricated in potassium fluoride solution demonstrated the best sensitivity on hydrogen peroxide in the range of 10−5–3 × 10−3 M at pH 6.7 and at a potential of −600 mV (vs. Ag/AgCl). 相似文献
8.
Surface photovoltage phase spectroscopy study of the photo-induced charge carrier properties of TiO2 nanotube arrays 总被引:1,自引:0,他引:1
By using the surface photovoltage(SPV) technique based on a lock-in amplifier,surface states located 3.1 eV below the conduction band of TiO 2 have been detected in TiO 2 nanotube arrays prepared by anodization of titanium foil in fluoride-based ethylene glycol solution.The photo-induced charge transportation behavior of TiO 2 nanotube arrays was also studied by qualitatively analyzing their SPV phase spectra measured under different external bias.When a negative bias was applied,carriers excited from surface states have the same transportation properties as those excited from the valence band;in contrast,when a positive bias was applied,these two kinds of photo-excited carriers exhibit different transportation behavior. 相似文献
9.
A new concept for formation of nanostructured intrinsically conducting polymers (ICP) is demonstrated. Polypyrrole can be electropolymerized from an ionic-surfactant-solution in TiO(2) nanotube framework to form a geometrical structure of self-organized nanopore arrays. Polymerization is initialized selectively in the space between nanotube walls forming a mechanically stable polymer network with controlled wall thickness from 40 to 10 nm. Such robust polymer nanostructures are very promising for application in electrochemical systems of limited charge carrier diffusion length. 相似文献
10.
Hongchong Chen Di Li Xuejin Li Jinhua Li Quanpeng Chen Baoxue Zhou 《Journal of Solid State Electrochemistry》2012,16(12):3907-3914
The adsorption and photoelectrocatalytic characteristics of four different kinds of organic compounds (d-fructose, glutamic acid, fumaric acid, and nicotinic acid) on TiO2 nanotube arrays (TNAs) were investigated using a thin-layer cell, wherein the compounds were rapidly and exhaustively oxidized. The photogenerated current–time (I ph–t) profiles were found to be related to the adsorption, the degradation rate, and the reaction mechanism. The relationship between the initial organic compounds concentrations and photocurrent peaks (I 0ph) fit the Langmuir type adsorption model well, thereby confirming that the adsorption of organic compounds on TNAs was via monolayer adsorption. The adsorption equilibrium constant was obtained from the Langmuir equation. The results indicate that the adsorption performance of the organic compounds on TNAs were in the following order: nicotinic acid < d-fructose < glutamic acid < fumaric acid. The degradation of organic compounds on TNAs was classified as either easy or difficult based on the time of complete mineralization (t end) of the organic samples under an equal holes consumption; the degree of degradation were as follows: fumaric acid < d-fructose < glutamic acid < nicotinic acid. The photoelectrocatalytic characteristics of the organic compounds on TNAs were also discussed by analyzing the changes in the I ph –t profiles. 相似文献
11.
Subhayan Biswas Mohammad Shahjahan Md. Faruk Hossain Takakazu Takahashi 《Electrochemistry communications》2010,12(5):668-671
A vertically aligned transparent TiO2 nanotube array (tTNA) of significantly enhanced tube-length 6.3 ± 0.3 µm was successfully synthesized on glass substrates by anodization technique with ammonium fluoride and ethylene glycol-based electrolyte. Prior to anodization, Ti metal was deposited on glass substrate by facing-target sputtering technique with various sputtering pressures at substrate temperature 420 °C to find out the relation between the structural properties of the Ti layer and the corresponding growth mechanism of the TiO2 nanotube. The study revealed that structural properties of Ti metal layers and its adhesion to the glass substrate, which can be tuned by deposition parameters, play an important role in the process of tTNA formation. 相似文献
12.
Chunxiao Feng Guangqing Xu Haipeng Liu Jun Lv Zhixiang Zheng Yucheng Wu 《Journal of Solid State Electrochemistry》2014,18(1):163-171
A GOx/Ag/TiO2 glucose biosensor was achieved by photoreducing Ag nanoparticles on TiO2 nanotube arrays (NTAs) following with adsorption of GOx. The morphology, structure, and element component of Ag/TiO2 NTAs were characterized by scanning electron microscope, transmission electron microscope, and X-ray diffraction. Ag nanoparticles were uniformly deposited on surface of TiO2 NTAs with average size of 15 nm and the size and distribution changed with the immersing time of TiO2 NTAs in AgNO3 aqueous solution. Electrochemical properties of Ag/TiO2 NTAs were characterized by cyclic voltammetry and amperometric detection of H2O2, revealing that TiO2 NTAs with immersing time of 30 min achieve the best electrochemical activity. The GOx/Ag/TiO2 NTAs biosensor with optimum conditions achieves a sensitivity of 0.39μA mM?1 cm?2 with liner range from 0.1 to 4 mM. 相似文献
13.
In SI Nielsen MG Vesborg PC Hou Y Abrams BL Henriksen TR Hansen O Chorkendorff I 《Chemical communications (Cambridge, England)》2011,47(9):2613-2615
We report here on a study of vertically aligned TiO(2) nanotube arrays grown by the one-step anodic oxidation technique and their photocatalytic performance for methane decomposition. Quantitative activity data as a function of film thickness is obtained. 相似文献
14.
Qin Xie Qiang‐Qiang Meng Gui‐Lin Zhuang Jian‐Guo Wang Xiao‐Nian Li 《International journal of quantum chemistry》2012,112(13):2585-2590
Photocatalytic splitting water into hydrogen and oxygen by utilizing solar energy is regarded as an effective strategy to solve oil crisis. By utilizing density functional calculations, we herein present the systemic studies with respect to water splitting mechanism on N‐doped TiO2 nanotube arrays (NTAs), and focus on activation energy, thermodynamic properties, and effects of N‐doping on reaction process. Our results reveal that the impurity 2p states of doped nitrogen effectively change electronic structure of TiO2 NTAs, which act as an electron acceptor and facilitate weakly bound electrons of valence band to be easily excited to acceptor level, as well as enhance the first H2O adsorption and dissociation on the inside wall of N‐doped TiO2 NTAs. Therefore, it is found that the rate‐determining step of water splitting is the formation reaction of HOO* on N‐doped TiO2 NTAs rather than the formation of HO* from the first H2O. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011 相似文献
15.
Guangxing Ping Chao Wang Da Chen Shu Liu Xiani Huang Laishun Qin Yuexiang Huang Kangying Shu 《Journal of Solid State Electrochemistry》2013,17(9):2503-2510
The photocatalytic conversion of CO2 and H2O to alcohols was achieved using self-organized TiO2 nanotube arrays (TNAs), which were prepared by electrochemical anodization of Ti foils in 1 M (NH4)2SO4 electrolyte containing 0.5 wt% NH4F. Experimental results revealed that the morphology and structure of self-organized TNAs could be strongly influenced by the applied voltage and anodization temperature, and the optimized TNAs were prepared by electrochemical anodization of Ti foils under optimal conditions (i.e., at 20 V for 2 h at 30 °C). The as-prepared TNAs were amorphous and could be transformed to anatase phase during the thermal treatment at 450 °C in air for 3 h. By using the annealed TNAs as a photocatalyst, the photocatalytic reduction of CO2 to alcohol, predominately methanol and ethanol, was demonstrated under Xenon lamp illumination. Based on the photocatalytic measurements, the production rates of methanol and ethanol were calculated to be ~10 and ~9 nmol cm?2 h?1, respectively. In addition, the formation mechanism of methanol and ethanol was also tentatively proposed. 相似文献
16.
Nanotube arrays of amorphous vanadium pentoxide (V(2)O(5)) were synthesized via template-based electrodeposition, and its electrochemical properties were investigated for Li-ion intercalation applications. The nanotubes have a length of 10 microm, outer diameter of 200 nm and inner diameter of 100 nm. Electrochemical analyses demonstrate that the V(2)O(5) nanotube array delivers a high initial capacity of 300 mAh/g, about twice that of the electrochemically prepared V(2)O(5) film. Although the V(2)O(5) nanotube array shows a more drastic degradation than the film under electrochemical redox cycles, the nanotube array reaches a stabilized capacity of 160 mAh/g, which remains about 1.3 times the stabilized capacity of the film. 相似文献
17.
Dongliang Yu Shaoyu Zhang Xufei Zhu Hongtu Ma Hua Han Ye Song 《Journal of Solid State Electrochemistry》2014,18(9):2609-2617
Through introducing appropriate additives into the electrolytes, the morphology and growth efficiency of TiO2 nanotube arrays (TNTAs) have been greatly influenced. The anodizing current transients and the corresponding morphology of TNTAs were investigated and compared in detail by SEM. To further understand the mechanism, the measured current-time curves obtained during the anodization of titanium in the electrolytes with different additives are simulated. Notably, in the total anodizing current, the ionic current is separated from the electronic current according to the present model, and that the electronic current and ionic current make different contributions to the growth of TNTAs. It is found that the initiation of nanopores may be caused by the rupture of the oxygen bubbles occluded in the growing oxide, and the opening of nanotubes is thought to be close related to the disturbance effect of the rising bubbles (caused by electronic current). The present results would be helpful for understanding the formation mechanism of TNTAs from the perspective of ionic and electronic current. And practically, the nanotube length can be predicted and deduced quantitatively via simulating and comparing electronic and ionic current. 相似文献
18.
Facile electrochemical synthesis of hexagonal Cu2O nanotube arrays and their application 总被引:1,自引:0,他引:1
Large-scale and highly oriented single-crystalline hexagonal Cu(2)O nanotube arrays have been successfully synthesized using a two-step solution approach, which involves the electrodeposition of oriented Cu(2)O nanorods and a subsequent dissolution technique along the c axis to form a tubular structure. Herein, NH(4)Cl was found to be an effectual additive, and it can successfully realize the dissolution process of Cu(2)O from nanorods to nanotubes. The dissolution mechanism of Cu(2)O from nanorods to nanotubes was illustrated in detail. These prepared Cu(2)O nanotube arrays were characterized by SEM, EDS, XRD, XPS, and TEM. The photoluminescence (PL) spectrum of Cu(2)O nanotube arrays was also measured, and it shows there is a greater fraction of copper or oxygen vacancies in these prepared Cu(2)O nanotubes. Finally, the applications of Cu(2)O nanotube arrays for gas sensors were investigated in this paper. 相似文献
19.
The tubular-shaped nanostructure of TiO(2) is very interesting, and highly ordered arrays of TiO(2) nanotubes (TNTs) can be easily fabricated by anodization of the Ti substrate in specific electrolytes. Here in this feature article, we review synthesis methods for various TNTs including normal, alloy, and architectural forms such as bamboos, lace, and flowers. Specific nanosize architectures such as bamboo and lace types can be regulated by alternating voltage and further anodizing. In order to extend light response of TNTs to visible solar spectra, various dopings of specific elements have been discussed. The normal and modified TNTs are suggested for applications such as dye sensitized solar cells, water splitting, photocatalytic degradation of pollutants, CO(2) reduction, sensors, energy storage devices including Li ion batteries and supercapacitors, and other applications such as flexible substrate and biomaterials. 相似文献
20.
M.F. Hossain S. Biswas Z.H. Zhang T. Takahashi 《Journal of photochemistry and photobiology. A, Chemistry》2011,217(1):68-75
Solar cells were fabricated using novel bubble-like CdSe nanoclusters sensitized highly ordered titanium oxide nanotube (TiO2 NT) array, prepared by anodization technique. The CdSe sensitization of TiO2 NT arrays was carried out by a chemical bath deposition method with freshly prepared sodium selenosufite, ammonium hydroxide and cadmium acetate dehydrate at different deposition times: 20, 40 and 60 min. The adsorption of CdSe nanoclusters on the upper and inner surface of the TiO2 NT arrays has been confirmed by field emission scanning electron and transmission electron microscopes. The results show the variation in cell a performance with different deposition times (20, 40, and 60 min) of CdSe on TiO2 NT arrays. The solar cell with CdSe, deposited for 60 min, shows reasonably high photovoltaic property compared to the reported results of similar studies. This solar cell shows the maximum photoelectric conversion efficiency of 1.56% (photocurrent of 7.19 mA/cm2; photovoltage of 0.438 V; and fill factor of 49.5%) and average incident photon to current efficiency of 50.2%. The photocurrent, incident photon-current efficiency and electron lifetime have been improved due to the increase of covered area and size of bubble-like CdSe nanoclusters on TiO2 NT arrays with the increase of deposition time. 相似文献