首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
We study the joint replenishment problem (JRP) for M items under deterministic demand, with a minimum order quantity constraint for each item in the replenishment order. We derive bounds on the basic cycle time and we propose an efficient global optimisation procedure to solve the JRP with constraints. Moreover, we also consider the case where a correction is made for empty replenishment occasions. The algorithms are tested with data from a real case and some additional numerical experiments are also presented.  相似文献   

2.
In this paper, we develop a deterministic inventory model with two warehouses (one is the existing storage known as own warehouse (OW) and the other is hired on rental basis known as rented warehouse (RW). The model allows different levels of item deterioration in both warehouses. The demand rate is supposed to be a linear (increasing) function of time and the replenishment rate is infinite. The stock is transferred from RW to OW in continuous release pattern and the associated transportation cost is taken into account. Shortages in OW are allowed and excess demand is backlogged. For the general model, we give the equations for the optimal policy and cost function and we discuss some special cases. A numerical example is given to illustrate the solution procedure of the model. Finally, based on this example, we conduct a sensitivity analysis of the model.  相似文献   

3.
带有两货栈及时变需求的变质性物品的最优EOQ模型(英)   总被引:3,自引:0,他引:3  
本文针对一般的时变需求与两个货栈(自己货栈和租用货栈),建立了变质性物品的最优确定性EOQ模型,提供了用来寻求最优补充策略的方法,并就线性需求出示了两个数值例子.  相似文献   

4.
We consider a joint facility location–allocation and inventory problem that incorporates multiple sources of warehouses. The problem is motivated by a real situation faced by a multinational applied chemistry company. In this problem, multiple products are produced in several plants. Warehouse can be replenished by several plants together because of capabilities and capacities of plants. Each customer in this problem has stochastic demand and certain amount of safety stock must be maintained in warehouses so as to achieve certain customer service level. The problem is to determine number and locations of warehouses, allocation of customers demand and inventory levels of warehouses. The objective is to minimize the expected total cost with the satisfaction of desired demand weighted average customer lead time and desired cycle service level. The problem is formulated as a mixed integer nonlinear programming model. Utilizing approximation and transformation techniques, we develop an iterative heuristic method for the problem. An experiment study shows that the proposed procedure performs well in comparison with a lower bound.  相似文献   

5.
In this study, we develop and analyse an optimal solution procedure for the inventory lot-sizing problem with a general class of time-varying demand functions. The objective of the procedure is to determine the optimal replenishment schedule over a finite planning horizon during which shortages are allowed and are completely backordered. We show that the procedure yields a unique optimal replenishment schedule for both increasing and decreasing demand patterns. We also discuss two particular cases of linear and non-linear demand trend models, and we illustrate the optimal solution procedure with four numerical examples.  相似文献   

6.
主要研究在需求不确定的救援环境下,由一个区域救援总站和多个地方救援点组成的二级应急救援系统多种救援物资协同共享问题.各地方救援点对救援物资的需求为随机模糊变量,当某一地方救援点救援物资不足时,可以通过不同的协同方式进行应急补库,所有应急补库方式均考虑了地方救援点的优先级.据此建立了在一定服务满足率条件下以救援时间最短为目标函数的模型,结合随机模糊变量模拟和PSO、PSO-SA算法对模型进行了求解.最后对各种协同方式进行了对比并分析了相关变量的敏感性.结果表明:允许完全转运的协同共享方式能有效地缩短救援时间.  相似文献   

7.
多供应商多客户物流系统的周期运送库存决策问题是一个非常复杂的问题,但它在供应链管理中又极其重要.本文主要考虑一个由多个供应商、一个联运中心和多个客户组成的三级物流系统的运送频率选择优化问题.假定两级库存均采用周期补货策略,且补货周期满足二次幂(POT)策略,每个客户处的产品需求为确定性需求.假设给定一套可行频率的情况下,选择使整个系统总的长期平均成本最小化的联运中心的补货策略和联运中心到各客户的配送策略.分为单频率配送和多频率配送两种情况分别建立了数学模型,并设计了相应的近似算法——基于支配性的邻域搜索启发式算法和基于饱和性的邻域搜索启发式算法.计算试验显示,本文所设计的近似算法对于求解多对多配送这样的大型组合优化问题是有效的.  相似文献   

8.
We consider a model to allocate stock levels at warehouses in a service parts logistics network. The network is a two-echelon distribution system with one central warehouse with infinite capacity and a number of local warehouses, each facing Poisson demands from geographically dispersed customers. Each local warehouse uses a potentially different base stock policy. The warehouses are collectively required to satisfy time-based service targets: Certain percentages of overall demand need to be satisfied from facilities within specified time windows. These service levels not only depend on the distance between customers and the warehouses, but also depend on the part availabilities at the warehouses. Moreover, the warehouses share their inventory as a way to increase achieved service levels, i.e., when a local warehouse is out of stock, demand is satisfied with an emergency shipment from another close-by warehouse. Observing that the problem of finding minimum-cost stock levels is an integer non-linear program, we develop an implicit enumeration-based method which adapts an existing inventory sharing model from the literature, prioritizes the warehouses for emergency shipments, and makes use of a lower bound. The results show that the proposed inventory sharing strategy results in considerable cost reduction when compared to the no-sharing case and the method is quite efficient for the considered test problems.  相似文献   

9.
This paper extends the deterministic, single product, dynamic E0Q model to the case where demand increases linearly with time but at discrete time points and where the number of replenishments is also discrete. The problem is to find the number of orders and the replenishment schedule that will either maximize the return on the investment on inventory or minimize inventory costs. The proposed solution to either problem requires to first find the replenishment schedule that will minimize the total inventory throughout the planning horizon, for a given number of orders and then find the optimal number of replenishment points. The solution algorithms exploit the discrete nature of the demand and do not require the decomposability property of dynamic programming. This is particularly important in the return on investment case, where decomposability cannot be achieved.  相似文献   

10.
In this paper, we propose a two-stage stochastic model to address the design of an integrated location and two-echelon inventory network under uncertainty. The central issue in this problem is to design and operate an effective and efficient multi-echelon supply chain distribution network and to minimize the expected system-wide cost of warehouse location, the allocation of warehouses to retailers, transportation, and two-echelon inventory over an infinite planning horizon. We structure this problem as a two-stage nonlinear discrete optimization problem. The first stage decides the warehouses to open and the second decides the warehouse-retailer assignments and two-echelon inventory replenishment strategies. Our modeling strategy incorporates various probable scenarios in the integrated multi-echelon supply chain distribution network design to identify solutions that minimize the first stage costs plus the expected second stage costs. The two-echelon inventory cost considerations result in a nonlinear objective which we linearize with an exponential number of variables. We solve the problem using column generation. Our computational study indicates that our approach can solve practical problems of moderate-size with up to twenty warehouse candidate locations, eighty retailers, and ten scenarios efficiently.  相似文献   

11.
We determine replenishment and sales decisions jointly for an inventory system with random demand, lost sales and random yield. Demands in consecutive periods are independent random variables and their distributions are known. We incorporate discretionary sales, when inventory may be set aside to satisfy future demand even if some present demand may be lost. Our objective is to minimize the total discounted cost over the problem horizon by choosing an optimal replenishment and discretionary sales policy. We obtain the structure of the optimal replenishment and discretionary sales policy and show that the optimal policy for finite horizon problem converges to that of the infinite horizon problem. Moreover, we compare the optimal policy under random yield with that under certain yield, and show that the optimal order quantity (sales quantity) under random yield is more (less) than that under certain yield.  相似文献   

12.
A finite time horizon inventory problem for a deteriorating item having two separate warehouses, one is a own warehouse (OW) of finite dimension and other a rented warehouse (RW), is developed with interval-valued lead-time under inflation and time value of money. Due to different preserving facilities and storage environment, inventory holding cost is considered to be different in different warehouses. The demand rate of item is increasing with time at a decreasing rate. Shortages are allowed in each cycle and backlogged them partially. Shortages may or may not be allowed in the last cycle and under this circumstance, there may be three different types of model. Here it is assumed that the replenishment cycle lengths are of equal length and the stocks of RW are transported to OW in continuous release pattern. For each model, different scenarios are depicted depending upon the re-order point for the next lot. Representing the lead-time by an interval number and using the interval arithmetic, the single objective function for profit is changed to corresponding multi-objective functions. These functions are maximized and solved by Fast and Elitist Multi-objective Genetic Algorithm (FEMGA). The models are illustrated numerically and the results are presented in tabular form.  相似文献   

13.
In the past few years, considerable attention has been given to the inventory lot sizing problem with trended demand over a fixed horizon. The traditional replenishment policy is to avoid shortages in the last cycle. Each of the remaining cycles starts with a replenishment and inventory is held for a certain period which is followed by a period of shortages. A new replenishment policy is to start each cycle with shortages and after a period of shortages a replenishment should be made. In this paper, we show that this new type of replenishment policy is superior to the traditional one. We further propose four heuristic procedures that follow the new replenishment policy. These are the constant demand approximation method, the equal cycle length heuristic, the extended Silver approach, and the extended least cost solution procedure. We also examine the cost and computation time performances of these heuristic procedures through an empirical study. The number of test problems solved to optimality, average and maximum cost deviation from optimum were used as measures of cost performance. The results of the 10 000 test problems reveal that the extended least cost approach is most cost effective.  相似文献   

14.
根据第三方库存-路线问题的特点,以车辆租赁费用和运行费用之和为目标函数,不限制客户每次的配送量小于车辆容量,建立了满载运输和非满载运输混合的整数规划模型.针对第三方库存-路线问题的复杂性,本文设计嵌入禁忌搜索的遗传算法来同时决策库存和路线问题.首先对配送间隔进行编码,然后用禁忌搜索法计算每天需要配送的车辆路线问题.最后与其下界值进行比较,结果表明该算法是一个有效的算法,不但第三方能取得较低的运营总成本和较高的车辆利用率,而且也能为客户节约库存空间.  相似文献   

15.
A two-stage distribution planning problem, in which customers are to be served with different commodities from a number of plants, through a number of intermediate warehouses is addressed. The possible locations for the warehouses are given. For each location, there is an associated fixed cost for opening the warehouse concerned, as well as an operating cost and a maximum capacity. The demand of each customer for each commodity is known, as are the shipping costs from a plant to a possible warehouse and thereafter to a customer. It is required to choose the locations for opening warehouses and to find the shipping schedule such that the total cost is minimized. The problem is modelled as a mixed-integer programming problem and solved by branch and bound. The lower bounds are calculated through solving a minimum-cost, multicommodity network flow problem with capacity constraints. Results of extensive computational experiments are given.  相似文献   

16.
This paper deals with the inventory replenishment problem over a fixed planning horizon for items with linearly time-varying demand and under inflationary conditions. We develop models and optimal solution procedures with and without shortages. We do not put any restriction on the length of the replenishment cycles making the proposed methods the first optimal solution procedure for this problem. Using four examples, we illustrate the proposed solution procedures and study the effect of changing the inflation and discount rates on the optimal replenishment schedules.  相似文献   

17.
We consider a replenishment and disposal planning problem (RDPP) that arises in settings where customer returns are in as-good-as-new condition. These returns can be placed into inventory to satisfy future demand or can be disposed of, in case they lead to excess inventory. Our focus is on a multi-product setting with dynamic demands and returns over a finite planning horizon with explicit replenishment and disposal capacities. The problem is to determine the timing of replenishment and disposal setups, along with the associated quantities for the products, so as to minimize the total costs of replenishment, disposal, and inventory holding throughout the planning horizon. We examine two variants of the RDPP of interest both of which are specifically motivated by a spare part kitting application. In one variant, the replenishment capacity is shared among multiple products while the disposal capacity is product specific. In the other variant, both the replenishment and disposal capacities are shared among the products. We propose a Lagrangian Relaxation approach that relies on the relaxation of the capacity constraints and develop a smoothing heuristic that uses the solution of the Lagrangian problem to obtain near-optimal solutions. Our computational results demonstrate that the proposed approach is very effective in obtaining high-quality solutions with a reasonable computational effort.  相似文献   

18.
The purpose of this paper is to review and summarize the literature on the joint replenishment problem (JRP) since 1989. Our review indicates that while research on the basic form of the JRP under the original classic assumptions may have slowed, there is much interest in new versions of the problem with relaxed assumptions, including dynamic or stochastic demand. Furthermore, recent research on the problem has focused on finding faster algorithms to the classic JRP rather than on improving the solution quality.  相似文献   

19.
In this paper, we deal with the sequencing and routing problem of order pickers in conventional multi-parallel-aisle warehouse systems. For this NP-hard Steiner travelling salesman problem (TSP), exact algorithms only exist for warehouses with at most three cross aisles, while for other warehouse types literature provides a selection of dedicated construction heuristics. We evaluate to what extent reformulating and solving the problem as a classical TSP leads to performance improvements compared to existing dedicated heuristics. We report average savings in route distance of up to 47% when using the LKH (Lin–Kernighan–Helsgaun) TSP heuristic. Additionally, we examine if combining problem-specific solution concepts from dedicated heuristics with high-quality local search features could be useful. Lastly, we verify whether the sophistication of ‘state-of-the-art’ local search heuristics is necessary for routing order pickers in warehouses, or whether a subset of features suffices to generate high-quality solutions.  相似文献   

20.
In this paper we study the stochastic joint replenishment problem. We compare the class of periodic replenishment policies and the class of can-order policies for this problem. We present a method, based on Markov decision theory, to calculate near-optimal can-order policies for a periodic-review inventory system. Our numerical study shows that the can-order policy behaves as well as, if not better than, the periodic replenishment policies. In particular, for examples where the demand is irregular, we find cost differences up to 15% in favour of the can-order policy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号