首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
2.
Summary From the total phospholipids of the cotton plant of the thin-fibered variety 5904-I(Gossypium barbadense) chromatographically homogeneous fractions of phosphatidylethanolamines, phosphatidylcholines, and phosphatidylinositols have been isolated. The well-known glycerophospholipid structure of these fractions has been established on the basis of their IR spectra and the products of their acid hydrolysis.Institute of the Chemistry of Plant Substances, Academy of Sciences of the Uzbek SSR. Translated from Khimiya Prirodnykh Soedinenii, No. 5, pp. 558–560, September–October, 1974.  相似文献   

3.
4.
Summary 1. The combined phospholipids of the seed kernels of the cotton plant have been completely freed from accompanying carbohydrates by gel filtration on Molselekt G-25.2. It has been established by two-dimensional chromatography in a thin layer of silica gel that the phospholipids of the seed kernels of the cotton plant of thin-fibered variety 5904-I consist of X1- and X2-polygly cerophosphatides (2.4 and 7.1%, respectively), phosphatidylethanolamines (14.1%), phosphatidylcholines (50.4%), phosphatidylinositols (20.4%), and lysophosphatidylcholines (5.6%).3. The accompanying substances of the phospholipids of the cotton plant form two groups each of steroids and disaccharides.Institute of the Chemistry of Plant Substances, Academy of Sciences of the Uzbek SSSR, Tashkent. Translated from Khimiya Prirodnykh Soedinenii, No. 1, pp. 19–21, January–February, 1976.  相似文献   

5.
Mu  D. D.  Zhao  Y. X.  Sun  G. Y.  Bobakulov  Kh. M.  Aisa  H. A.  Wu  T. 《Chemistry of Natural Compounds》2021,57(5):939-941
Chemistry of Natural Compounds -  相似文献   

6.
7.
The interaction of representatives of three classes of phytohormones, abscisic acid (ABA), the synthetic auxin 1-NAA, and the synthetic cytokinin 6-BAP, with ABA-binding cotton protein was studied. Binding of ABA with its protein was shown to be specific and receptor-like. Competitive protein binding showed that 1-NAA (15±3%), 6-BAP (82±3%), and ABA (95±3%) replace3H-ABA from the protein complex. The possibility of reacting ABA-binding protein with various classes of intracellular phytohormones is discussed.Institute of Genetics and Experimental Biology of Plants, Academy of Sciences of the Republic of Uzbekistan, Tashkent, fax (99871) 64 22 30. Translated from Khimiya Prirodnykh Soedinenii, No. 3, pp. 252–253, May–June, 2000.  相似文献   

8.
9.
10.
11.
This article describes the characterization of novel natural lignocellulosic bark fibers extracted from the stem of the Gossypium arboreum (cotton) plant. The G. arboreum stem fibers were treated with 5% (w/v) aqueous NaOH solution for different soaking times, and the Fourier transform infrared spectroscopy analysis was conducted to examine the chemical compounds of the raw and treated fibers. The cellulose content improved from 70.06 to 83.91% after the treatment. The X-ray diffraction results indicate that the crystalline index and size were enhanced. Thermogravimetric analysis was performed to study the thermal properties and found that the thermal stability was higher for the treated fibers. The tensile strength and modulus were increased for the alkaline-treated fibers compared to the untreated fibers.  相似文献   

12.
13.
The adsorption of Basic Magenta II onto H2SO4 activated immature Gossypium hirsutum seeds was analysed using Ho, modified Freundlich, Sobkowsk–Czerwi, Blanchard, Elovich, Avrami, and modified Ritchie kinetic models by nonlinear regression-sum of normalized errors analysis. The goodness of fit was evaluated with coefficient of determination and root mean square error. The good agreement of experimental data to Avrami second-order model indicated that the mechanism of adsorption followed multiple kinetic orders. The Avrami second-order mechanism was applied to predict the rate constant of sorption and the equilibrium capacity and subsequently the obtained equilibrium adsorption capacities were utilized to find the equilibrium concentrations. Langmuir, Freundlich, Temkin, Sips and Hill isotherms were investigated to understand the nature of adsorption with the help of nonlinear regression analysis. Both Sips and Hill isotherms were best fit to the adsorption equilibrium data showing the homogeneous adsorption on the heterogeneous surface of carbon and the positive co-operative manifestations of the Basic Magenta II molecules. The mass transfer study depicted the details such as mass transfer coefficient, intra-particle diffusion rate, pore diffusion coefficient, and film diffusion coefficient. The adsorption process was found to be controlled by film diffusion. The thermodynamic parameters like, Gibbs free energy change, enthalpy change, entropy change and isosteric heat of adsorption confirmed the endothermic, feasible and spontaneous nature of adsorption. A single stage batch adsorber was designed using Sips isotherm constants to estimate the amount of carbon required for desired purification.  相似文献   

14.
A method of isolating the total isoprenoids and their separate components from cotton leaves was developed. Their effect on the level of protein biosynthesis by cotton-sprout nuclei was found to be greater in vivo than in vitro. -Tocopherol was found to be the most active among them.  相似文献   

15.
Potassium (K) being the major limiting factor affecting cotton yield and quality has received massive research attention and the effects of various K fertilization techniques/organic amendments have been studied extensively. However, it is not clear whether the straw based, high pH biochar affects K availability, lint yield and quality of the cotton crop in alkaline calcareous soils. In the present study, we carried out a field experiment on a moderate to strongly calcareous silt loam soil to demonstrate the effect of straw-based biochar and potassium application levels on the growth, seed cotton yield and the lint quality. The experimental treatments comprised of two factors, A) biochar types i) Control no biochar, ii) Rice husk biochar (RHB), iii) Wheat straw biochar (WSB), and iv) Rice straw biochar (RSB), factor B) potassium application levels (i) control, no K fertilizer application, ii) K at 15 kg ha−1, and iii) K at 30 kg ha−1 (4 × 3 × 3, n = 36). Results showed that overall cotton growth and yield was significantly improved with increasing rates of potassium application. Three biochar sources affected seed cotton yield and quality with varying effects. For instance, the RSB increased plant height (11.71% to 22.47%), number of bolls per plant (0.74% to 13.75%), average boll weight (35.44% to 36.22%), the seed cotton yield was increased by 14.48% over the control when rice straw biochar was applied in combination with potassium at 30 kg ha−1. However, the ginning out turn (%) was declined with potassium application in combination with all three-biochar compared to control (no biochar addition). The WSB increased staple length and micronaire by 4.32% and 24.50% without potassium application. The potential effects of straw based biochar and potassium application on seed cotton yield and quality deserve further studies to identify the most suitable biochar as per soil chemical properties.  相似文献   

16.
17.
Malvaceae and Brassicaceae family crops are economically important; however, their production has been markedly decreased in recent years due to various plant pests. Hence, the search for novel classes of efficient biological approaches continues due to unavailability of precise pesticides. The present study was designed to synthesize, characterize and evaluate the efficacy of silver nanoparticles (AgNPs) obtained using stem extract of Gossypium hirsutum (cotton plant) against plant pathogens Xanthomonas axonopodis pv. malvacearum and Xanthomonas campestris pv. campestris. Biosynthesized AgNPs were characterized using UV–visible spectrophotometry, Dynamic Light Scattering, Scanning Electron Microscopy combined with energy‐dispersive X‐ray analysis and Fourier transform infrared spectroscopy. The synthesized AgNPs were spherical in shape with size ranging from 20 to 100 nm. The characterized AgNPs were investigated for their efficacy against bacterial plant pathogens using the paper disc method. In vitro studies with two concentrations of AgNPs (50 and 100 μg mL?1) showed zone of inhibition 11.0 ± 1.0 and 12.3 ± 0.5 mm for X. axonopodis pv. malvacearum and 9.7 ± 0.6 and 15.33 ± 1.0 mm for X. campestris pv. campestris. Furthermore, the AgNPs exhibited strong antioxidant activity, and a phytotoxicity study on Vigna unguiculata (cowpea plant) showed no toxicity. Overall, the findings suggest that G. hirsutum stem extract could be efficiently used in the synthesis of AgNPs and showed antimicrobial activity against plant pathogens. Hence, the synthesized nanoparticles could be used to combat plant pathogens in the agriculture sector.  相似文献   

18.
19.
The response and the functioning of the photosynthetic machinery of cotton, Gossypium hirsutum during water stress was studied by leaf optical properties, linear (ETRII) and cyclic electron flow (CEF) and chlorophyll a fluorescence. We observed that in G. hirsutum, during water limitation, Chlorophyll b showed the best correlation with reflectance at 731 nm and is a better indicator of drought. Fv/Fm was observed to be very insensitive to mild water stress. However, during severe water stress the leaves exhibit considerable inhibition in Fv/Fm and an increase in anthocyanin levels by about 20‐fold. CEF was very responsive to mild water stress. The mild drought stress caused large decrease in the ability of the leaves to utilize the light energy. Photosystem I and photosystem II is protected from photoinhibition by high CEF and nonphotochemical quenching under mild water stress. While during severe drought stress, linear electron flow showed a sharp decrease in comparison to CEF. CEF play a major role in G. hirsutum leaves during mild as well as under severe water stress condition and is thus a good indicator of water stress.  相似文献   

20.
Gossypol is a defense compound in cotton plants for protection against pests and pathogens. Gossypol biosynthesis involves the oxidative coupling of hemigossypol and results in two atropisomers owing to hindered rotation around the central binaphthyl bond. (+)‐Gossypol predominates in vivo, thus suggesting stereochemically controlled biosynthesis. The aim was to identify the factors mediating (+)‐gossypol formation in cotton and to investigate their potential for asymmetric biaryl synthesis. A dirigent protein from Gossypium hirsutum (GhDIR4) was found to confer atropselectivity to the coupling of hemigossypol in presence of laccase and O2 as an oxidizing agent. (+)‐Gossypol was obtained in greater than 80 % enantiomeric excess compared to racemic gossypol in the absence of GhDIR4. The identification of GhDIR4 highlights a broader role for DIRs in plant secondary metabolism and may eventually lead to the development of DIRs as tools for the synthesis of axially chiral binaphthyls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号