首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In order to study the structural limits in the design of molecular motors, a tert-butyl substituted analogue was prepared. The unexpected photochemical and thermal isomerisation processes and the stereochemistry of new overcrowded alkene are described. The bis tert-butyl substituted alkenes were synthesised in a five-step sequence with an overall yield of 7.5%. Structural assignments of the isomers based on experimental data were supported by calculations of all four isomers of the alkene. X-Ray crystal analysis showed a strongly twisted alkene (torsion angle 39 degrees ) for a less stable photochemically generated cis-isomer.  相似文献   

2.
Enantiospecific synthesis of bio-active butenolide (+)-iso-cladospolide B from d-(?)-tartaric acid in a short synthetic sequence is presented. Pivotal reaction sequence includes cross metathesis of an alkene and Wittig olefination.  相似文献   

3.
A simple method for the preparation of fused polycyclic compounds by an intramolecular cyclization of propargylic alcohols bearing an alkene moiety at a suitable position has been developed, where the presence of both Ru and Pt catalysts promotes a sequence of catalytic cycles in the same medium. This sequential system can be applied to an intermolecular reaction between a propargylic alcohol and an alkene to obtain the corresponding bicyclo[3,1,0]hex-2-ene derivative. These sequential reactions provide a conceptually new type of cycloaddition system between propargylic alcohols and alkenes.  相似文献   

4.
The title concept involves the use of structurally modified RCM substrates that contain extender arms, terminating in a remote reactive alkene. Initiation of an RCM sequence at that reactive alkene is followed by rapid intramolecular relay of the metal center to an initially less reactive alkene in the parent substrate. This permits one to control the relative timing (or direction) of a metathesis sequence. For example, one can reverse the inherent tendency of an unsymmetrical alpha,omega-diene substrate to close, say, left-to-right, to that of right-to-left. Four distinct types of application of the RRCM concept are demonstrated. Among other things, they show the preparation of tetrasubstituted electron-deficient alkenes using G1 [(Cy3P)2(Cl2)Ru=CHPh], complementary control of directionality (endedness), auxiliary benefits (enzyme specificity) from the incorporation of additional steric bulk, the activation of otherwise ineffective substrates for RCM closure, the use of unorthodox alkenes as initiation sites for ring closure, and control of product olefin geometry.  相似文献   

5.
An efficient synthesis of the macrolactone 3 of the salicylihalamides in 10 linear steps from alkene 6 is described. The key steps involved a Stille coupling between the chiral stannane 5 and benzyl bromide 4, which produced alkene 15 in good yield, and subsequent base-induced macrolactonization then gave compound 3. Macrolactone 3 was then converted into the known salicylihalamide A intermediate 18 in a three-step sequence. Compound 3 was also converted into another known salicylihalamide A and B intermediate 23 in a five-step sequence.  相似文献   

6.
A novel and stereospecific synthesis of (+)-exo-brevicomin is disclosed. The key step of the reaction sequence employs the sulfinyl moiety as an intramolecular nucleophile to functionalize an alkene π-complexed to a bromonium ion.  相似文献   

7.
A sequence of alkene complexes of platinum, PtCl(2)(PPh(3))(alkene) (alkene = ethylene, propene, 1-butene, cis-2-butene, 1-hexene, 1-octene, and 1-decene), has been prepared. These complexes are characterized by NMR spectroscopy, including assignment of each proton, and X-ray crystal structures of the 1-propene and 1-hexene complexes. Each complex was reacted with diethylamine. For the 1-hexene, 1-octene, and 1-decene complexes, the amine displaces the alkene. For the smaller alkenes, the diethylamine nucleophilically attacks the coordinated alkene. For propene and 1-butene, the low-temperature addition leads to the anti-Markovnikoff nucleophilic attack, which slowly converts at room temperature to the Markovnikoff product. The transformation from anti-Markovnikoff to Markovnikoff addition occurs without diethylamine dissociation.  相似文献   

8.
Bertrand Cottineau 《Tetrahedron》2007,63(41):10354-10362
The sequential reactions of a pyridine vinylation and alkene carbolithiation constitutes a new route to substituted 7-azaindoles. The methodology involves a reaction sequence of controlled carbolithiation of the vinyl double bond, subsequent trapping of the formal di-anion intermediate with a suitable electrophile, followed by an in situ ring closure and dehydration. The reaction sequence allows for aryl, heteroaryl, alkyl and keto substituents to be included at different positions around the heterocycle.  相似文献   

9.
2-Methyleneaziridines can be tethered to a variety of alkene or alkyne acceptors through the saturated carbon of the heterocyclic ring by application of a simple lithiation/alkylation sequence (8 examples, 31-59%). Treatment of the resultant alkene bearing substrates with BF(3)·OEt(2) leads to cis-octahydrocyclopenta[c]pyrroles in which up to four contiguous stereocentres are created in a diastereocontrolled manner after reductive work-up. Using an alkyne based substrate, a 2,4,5,6-tetrahydrocyclopenta[c]pyrrole is produced by rapid tautomerisation of the initially formed bisenamine. Evidence that these (3 + 2) 'cycloadditions' proceed in a stepwise manner via a 2-aminoallyl cation is presented.  相似文献   

10.
The synthesis of vinyl boronates and vinyl silanes was achieved by employing a Ru‐catalyzed alkene–alkyne coupling reaction of allyl boronates or allyl silanes with various alkynes. The double bond geometry in the generated vinyl boronates can be remotely controlled by the juxtaposing boron‐ and silicon groups on the alkyne substrate. The synthetic utility of the coupling products has been demonstrated in a variety of synthetic transformations, including iterative cross‐coupling reactions, and a Chan‐Lam‐type allyloxylation followed by a Claisen rearrangement. A sequential one‐pot alkene‐alkyne‐coupling/allylation‐sequence with an aldehyde to deliver a highly complex α‐silyl‐β‐hydroxy olefin with a handle for further functionalization was also realized.  相似文献   

11.
Stereoselective total synthesis of biologically active styryllactones 7-epi-goniofufurone, goniofufurone, goniopypyrone, goniotriol, altholactone, and etharvensin was achieved in high overall yields from a common intermediate derived from d-(-)-tartaric acid. It is based on the utility of a masked tetrol, comprising an alkene tether and four contiguous hydroxy groups. The pivotal reaction sequence involves hydroxy-directed lactonization via the oxidation of alkene, and subsequent elaboration to styryllactones. The masked tetrol was prepared by the extension of gamma-phenyl-gamma-hydroxy butyramide, readily obtained from the bis-dimethylamide of tartaric acid, employing a combination of selective Grignard additions and a stereoselective reduction.  相似文献   

12.
The sequenced addition of RLi to nitriles, trapping with isopropylformate, and dehydration with phosphoryl chloride provides an efficient, direct synthesis of alkene isocyanides. The one‐pot sequence involves a series of carefully orchestrated steps: addition, formylation, tautomerization, and dehydration, with CuCN catalyzing a key equilibration of a formyl imine to an N‐formyl enamine. The resulting aromatic alkeneisocyanides, that are otherwise challenging to synthesize, engage in an unusual [4+2]‐type cycloaddition/1,3‐H shift/decyanation sequence to afford substituted naphthalenes.  相似文献   

13.
It is demonstrated that phosphorylated forms of beta-nitro alcohols provide an excellent means of entry into beta-(phosphatoxy)alkyl radicals on exposure to tributyltin hydride and AIBN in benzene at reflux. These radicals then undergo heterolytic cleavage of the phosphate group to yield alkene radical cation/phosphate anion contact ion pairs which are trapped intramolecularly in a tandem polar/radical crossover sequence involving radical ionic chain reactions by allylic and propargylic amines. The substitution pattern of the alkene radical cation dictates the cyclization mode, and this may be engineered to form fused ring systems by an initial exo-mode nucleophilic cyclization or bridged bicyclic systems when the nucleophilic attack takes place in the endo-mode.  相似文献   

14.
Yubo Cui 《Tetrahedron》2010,66(26):4867-2626
Neopeltolide, a potent cytotoxin from a Carribean sponge, was synthesized through a brief sequence that highlights the use of ethers as oxocarbenium ion precursors. Other key steps include an acid-mediated etherification and sequence that features a Sonogashira reaction, an intramolecular alkyne hydrosilylation reaction, and a Tamao oxidation. The alkene that is required for the oxidative cyclization can be hydrogenated to provide access to the natural product or an epimer, or can be epoxidized or dihydroxylated to form polar analogs.  相似文献   

15.
A systematic theoretical study is carried out on the mechanism for Pd(II)-catalyzed oxidative cross-coupling between electron-deficient arenes and alkenes. Two types of reaction pathways involving either a sequence of initial arene C-H activation followed by alkene activation, or the reverse sequence of initial alkene C-H activation followed by arene activation are evaluated. Several types of C-H activation mechanisms are discussed including oxidative addition, σ-bond metathesis, concerted metalation/deprotonation, and Heck-type alkene insertion. It is proposed that the most favored reaction pathway should involve an initial concerted metalation/deprotonation step for arene C-H activation by (L)Pd(OAc)(2) (L denotes pyridine type ancillary ligand) to generate a (L)(HOAc)Pd(II)-aryl intermediate, followed by substitution of the ancillary pyridine ligand by alkene substrate and direct insertion of alkene double bond into Pd(II)-aryl bond. The rate- and regio-determining step of the catalytic cycle is concerted metalation/deprotonation of arene C-H bond featuring a six-membered ring transition state. Other mechanism alternatives possess much higher activation barriers, and thus are kinetically less competitive. Possible competing homocoupling pathways have also been shown to be kinetically unfavorable. On the basis of the proposed reaction pathway, the regioselectivity predicted for a number of monosubstituted benzenes is in excellent agreement with experimental observations, thus, lending further support for our proposed mechanism. Additionally, the origins of the regioselectivity of C-H bond activation is elucidated to be caused by a major steric repulsion effect of the ancillary pyridine type ligand with ligands on palladium center and a minor electronic effect of the preinstalled substituent on the benzene ring on the cleaving C-H bond. This would finally lead to the formation of a mixture of meta and para C-H activation products with meta products dominating while no ortho products were detected. Finally, the multiple roles of the ancillary pyridine type ligand have been discussed. These insights are valuable for our understanding and further development of more efficient and selective transition metal-catalyzed oxidative C-H/C-H coupling reactions.  相似文献   

16.
We report a protocol for alkene hydroxyalkenylation. Using a persulfate anion as a one-electron-oxidation reagent and 1,2-bis(phenylsulfonyl)ethylene as a radical acceptor in the presence of water, alkenes were converted into the corresponding 1-phenylsulfonyl-4-hydroxyalkenes in good to high yields. The hydroxyalkenylation process involves the nucleophilic hydroxylation of alkene radical cations to give β-hydroxyalkyl radicals, which, after a radical addition/β-elimination sequence, provide the products. We also report a photocatalytic protocol for alkoxyalkenylation.  相似文献   

17.
A sequence of chemoselective activation of N-acylaminoacids, münchnone generation, intramolecular 1,3-dipolar cycloaddition, and ring opening efficiently generated functionalized polycyclic structures such as cyclopenta[b]pyrroles or zwitterionic bicyclo[4.3.0]nonane or bicyclo[3.3.0]octanes in one operation is given. These zwitterionic species were isolated for the first time and were subsequently reduced to bicyclic aminoalcohols. The effect of the substitution of both the dipolarophile and the münchnone on the intramolecular cycloaddition outcome was examined. It was found that either nonactivated or electron-poor alkenes can react with the münchnone if these alkenes are tethered at position 4 on the münchnone (2, R2 = alkene tether), whereas only an electron-poor alkene at position 2 (2, R3 = alkene tether) could undergo successful cycloaddition. Also, münchnones substituted at position 2 with a phenyl (2, R3 = Ph) showed a dramatic increase in reactivity, whereas a phenyl at position 4 (2, R2 = Ph) had a very limited effect.  相似文献   

18.
The ubiquity of nitrogen heterocycles in biologically active molecules challenges synthetic chemists to develop a variety of tools for their construction. While developing metal‐free hydroamination reactions of hydrazine derivatives, it was discovered that carbazates and semicarbazides can also lead to alkene aminocarbonylation products if nitrogen‐substituted isocyanates (N‐isocyanates) are formed in situ as reactive intermediates. At first this reaction required high temperatures (150–200 °C), and issues included competing hydroamination and N‐isocyanate dimerization pathways. Herein, improved conditions for concerted intramolecular alkene aminocarbonylation with N‐isocyanates are reported. The use of βN‐benzyl carbazate precursors allows the effective minimization of N‐isocyanate dimerization. Diminished dimerization leads to higher yields of alkene aminocarbonylation products, to reactivity at lower temperatures, and to an improved scope for a reaction sequence involving alkene aminocarbonylation followed by 1,2‐migration of the benzyl group. Furthermore, fine‐tuning of the blocking (masking) group on the N‐isocyanate precursor, and reaction conditions relying on base catalysis for N‐isocyanate formation from simpler precursors resulted in room temperature reactivity, consequently minimizing the competing hydroamination pathway. Collectively, this work highlights that controlled reactivity of aminoisocyanates is possible, and provides a broadly applicable alkene aminocarbonylation approach to heterocycles possessing the β‐aminocarbonyl motif.  相似文献   

19.
Several dihydroagarofuran esters have been reported to be effective multidrug resistance (MDR) reversing agents for both cancer cells and bacteria. We report a rapid synthesis of the dihydroagarofuran ring system from carvone in a sequence that is highlighted by a sequential conjugate addition/aldol sequence, a ring closing metathesis reaction, and a diastereoselective alkene reduction to provide an axial methyl group. The synthesis allows for differential esterification reactions as required to study the roles of these groups in MDR reversal.  相似文献   

20.
A facile seven-step sequence was developed from 4′-bromopropiophenone, utilizing a Suzuki-type coupling with an alkene, to give several novel 5-substituted pyrazole derivatives in overall yields of 11-31%. They are potent CB1 antagonists and have binding affinities similar to SR 141716A. Like SR 141716A, they may prove to be clinically useful for the treatment of obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号