首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Friedel–Crafts acylation reaction, which belongs to the class of electrophilic aromatic substitutions is a highly valuable and versatile reaction in synthesis. Regioselectivity is predictable and determined by electronic as well as steric factors of the (hetero)arene substrate. Herein, a radical approach for the acylation of arenes and heteroarenes is presented. C−H acylation is achieved through mild cooperative photoredox/NHC radical catalysis with the cross-coupling of an arene radical cation with an NHC-bound ketyl radical as a key step. As compared to the classical Friedel–Crafts acylation, a regiodivergent outcome is observed upon switching from the ionic to the radical mode. In these divergent reactions, aroyl fluorides act as the acylation reagents in both the ionic as well as the radical process.  相似文献   

2.
Relationship between a radical species and radical acceptors of three different types of double bond in radical addition-cyclization was systematically investigated. Substrates carrying alpha,beta-unsaturated amide, isolated olefin, and oxime ether moieties underwent radical addition-cyclization to give differently substituted lactams depending upon the radicals used. The sulfanyl radical addition-cyclization of the substrate proceeded smoothly to give the 5-membered lactam having an alkoxyamino group as a result of preferable addition of an intermediary alpha-carbonyl radical to the oxime ether. On the other hand, the triethylborane-mediated radical addition-cyclization gave the lactam bearing an iodomethyl group as a result of addition to an intermediary alpha-carbonyl radical to isolated olefin. The different regioselectivity was explained by the stability of the intermediary radical and the interaction between SOMO and HOMO.  相似文献   

3.
5-Guanidino-4-nitroimidazole is a stable product from the peroxynitrite induced one-electron oxidation of guanine. Reaction mechanisms to form the 5-guanidino-4-nitroimidazole as well as 8-nitroguanine, through the combination of the guanine radical cation and nitrogen dioxide radical and through the combination of the deprotonated neutral guanine radical and nitrogen dioxide radical, have been investigated by the use of the B3LYP method of density functional theory. Our calculations suggest that the guanine radical cation mechanism is preferred over the neutral guanine radical mechanism and that a water molecule is involved in the reaction as a catalyst or as a reactant.  相似文献   

4.
Supramolecular radical chemistry has been emerging as a cutting-edge interdisciplinary field of traditional supramolecular chemistry and radical chemistry in recent years. The purpose of such a fundamental research field is to combine traditional supramolecular chemistry and radical chemistry together, and take the benefit of both to eventually create new molecules and materials. Recently, supramolecular radical cages have been becoming one of the most frontier and challenging research focuses in the field of supramolecular chemistry. In this Perspective, we give a brief introduction to organic radical chemistry, supramolecular chemistry, and the emerging supramolecular radical chemistry along with their history and application. Subsequently, we turn to the main part of this topic: supramolecular radical cages. The design and synthesis of supramolecular cages consisting of redox-active building blocks and radical centres are summarized. The host–guest interactions between supramolecular (radical) cages and organic radicals are also surveyed. Some interesting properties and applications of supramolecular radical cages such as their unique spin–spin interactions and intriguing confinement effects in radical-mediated/catalyzed reactions are comprehensively discussed and highlighted in the main text. The purpose of this Perspective is to help students and researchers understand the development of supramolecular radical cages, and potentially to stimulate innovation and creativity and infuse new energy into the fields of traditional supramolecular chemistry and radical chemistry as well as supramolecular radical chemistry.

This Perspective summarizes the recent developments of supramolecular radical cages including the design and synthesis of radical cages, their interesting host–guest spin–spin interactions and applications in radical-mediated/catalyzed reactions.  相似文献   

5.
Yong CHEN 《大学化学》2016,31(5):85-88
含有α-H的烯烃可以与溴自由基发生自由基加成和自由基取代反应。本文以丙烯为例,论述了自由基加成和取代反应的机理和竞争关系,从而帮助读者更好地理解反应条件对优势反应及产物的影响。  相似文献   

6.
Radical cations of heptane and octane isomers, as well as several longer branched alkanes, were detected in irradiated n-hexane solutions at room temperature by the method of time-resolved magnetic field effect (TR MFE). To identify radical cations, the hyperfine coupling constants as determined by simulation of the TR MFE curves were compared to the constants calculated using the density functional theory (DFT) approach. The g-values of the observed radical cations were close to that of the 2,2,3,3-tetramethylbutane radical cation studied earlier by optically detected electron spin resonance (ESR) and TR MFE techniques. No evidence of the decay of the radical cations of branched alkanes to produce olefin radical cations was found, which was further supported by the observation of positive charge transfer from the observed radical cations to cycloalkane molecules. The lifetimes of the radical cations of the branched alkanes were found to be longer than tens of nanoseconds.  相似文献   

7.
Hydroxymethylation of alkyl halides was achieved using paraformaldehyde as a radical C1 synthon in the presence of tetrabutylammonium cyanoborohydride as a hydrogen source. The reaction proceeds via a radical chain mechanism involving an alkyl radical addition to formaldehyde to form an alkoxy radical, which abstracts hydrogen from a hydroborate anion.  相似文献   

8.
Laser flash photolysis of 1-bromo-1-(4-methoxyphenyl)acetone in acetonitrile leads to the formation of the alpha-acyl 4-methoxybenzyl radical that under acidic conditions rapidly protonates to give detectable amounts of the radical cation of the enol of 4-methoxyphenylacetone. This enol radical cation is relatively long-lived in acidic acetonitrile (tau approximately equal to 200 micros), which is on the same order of magnitude as the radical cations of other 4-methoxystyrene derivatives. Rate constants for deprotonation of the radical cation and the acid dissociation constant for the enol radical cation were also determined using time-resolved absorption spectroscopy. Deprotonation is rapid, taking place with a rate constant of 3.9 x 10(6) s(-1), but the enol radical cation is found to be only moderately acidic in acetonitrile having a pK(a) = 3.2. The lifetime of the enol radical cation was also found to be sensitive to the presence of oxygen and chloride. The sensitivity toward oxygen is explained by oxygen trapping the vinyloxy radical component of the enol radical cation/vinyloxy equilibrium, while chloride acts as a nucleophile to trap the enol radical cation.  相似文献   

9.
A series of photo-CIDNP (chemically induced dynamic nuclear polarization) experiments were performed on pyrimidine monomers and dimers, using the electron-donor Nα-acetyltryptophan (AcTrp) as a photosensitizer. The CIDNP spectra give evidence for the existence of both the dimer radical anion, which is formed by electron transfer from the excited AcTrp* to the dimer, and its dissociation product, the monomer radical anion. The AcTrp spectra are completely different from those obtained with an oxidizing sensitizer like anthraquinone-2-sulfonate, because of different unpaired electron spin density distributions in pyrimidine radical anion and cation. In the spectra of the anti (1,3-dimethyluracil) dimers, polarization is detected that originates from a spin-sorting process in the dimer radical pair, pointing to a relatively long lifetime of the dimer radical anions involved. Although the dimer radical anions of the 1,1′-trimethylene-bridged pyrimidines may have a relatively long lifetime as well, their protons have only very weak hyperfine interaction, which explains why no polarization originating from the dimer radical pair is detected. In the spectra of the bridged pyrimidines, polarized dimer protons are observed as a result of spin sorting in the monomer radical pair, from which it follows that the dissociation of dimer radical anion into monomer radical anion is reversible. A study of CIDNP intensities as a function of pH shows that a pH between 3 and 4 is optimal for observing monomer polarization that originates from spin-sorting in the monomer radical pair. At higher pH the geminate recombination polarization is partly cancelled by escape polarization arising in the same product.  相似文献   

10.
2'-azido-2'-deoxyribonucleoside 5'-diphosphates are mechanism-based inhibitors of Ribonucleotide Reductase. Considerable effort has been made to elucidate their mechanism of inhibition, which is still controversial and not fully understood. Previous studies have detected the formation of a radical intermediate when the inhibitors interact with the enzyme, and several authors have proposed possible structures for this radical. We have conducted a theoretical study of the possible reactions involved, which allowed us to identify the structure of the new radical among the several proposals. A new reactional path is also proposed that is the most kinetically favored to yield this radical and ultimately inactivate the enzyme. The energetic involved in this mechanism, both for radical formation and radical decay, as well as the calculated Hyperfine Coupling Constants for the radical intermediate, are in agreement with the correspondent experimental values. This mechanistic alternative is fully coherent with remaining experimental data.  相似文献   

11.
Linoleic acid radical products formed by radical reaction (Fenton conditions) were trapped using 5,5-dimethyl-1-pyrrolidine-N-oxide (DMPO) and analysed by reversed-phase liquid chromatography coupled to electrospray mass spectrometry (LC-MS). The linoleic acid radical species detected as DMPO spin adducts comprised oxidized linoleic acid and short-chain radical species that resulted from the breakdown of carbon and oxygen centred radicals. Based on the m/z values, the short-chain products were identified as alkyl and carboxylic acid DMPO radical adducts that exhibited different elution times. The ions identified as DMPO radical adducts were studied by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The LC-MS/MS spectra of linoleic acid DMPO radical adducts exhibited the fragment ion at m/z 114 and/or the loss of neutral molecule of 113 Da (DMPO) or 131 Da (DMPO + H2O), indicated to be DMPO adducts. The short-chain products identified allowed inference of the radical oxidation along the linoleic acid chain by abstraction of hydrogen atoms in carbon atoms ranging from C-8 to C-14. Other ions containing the fragment ion at m/z 114 in the LC-MS/MS spectra were attributed to DMPO adducts of unsaturated aldehydes, hydroxy-aldehydes and oxocarboxylic acids. The identification of aldehydic products formed by radical oxidation of linoleic acid peroxidation products, as short-chain product DMPO adducts, is a means of identifying lipid peroxidation products.  相似文献   

12.
This review is focused on the recent advances in the functionalization of allenes via radical process. Different radical partners including carbon radicals and heteroatom radicals are discussed in the reactions of allenes. Generally, the radical formed in situ would attack the allene at the central carbon leading to allyl radical intermediate. However, the formation of alkenyl radical intermediate from allene could be observed as well in some cases with high regioselectivity and stereoselectivity.  相似文献   

13.
This review is focused on the recent advances in the functionalization of allenes via radical process. Different radical partners including carbon radicals and heteroatom radicals are discussed in the reactions of allenes. Generally, the radical formed in situ would attack the allene at the central carbon leading to allyl radical intermediate. However, the formation of alkenyl radical intermediate from allene could be observed as well in some cases with high regioselectivity and stereoselectivity.  相似文献   

14.
Abstract— 8-Cyanoisoalloxazines have been previously shown to form highly stable radical species at basic pH. We have measured the electron spin resonance (EPR) spectra of the radical forms of 8-cyano-10-methyl-3-sulfopropylisoalloxazine (I) at both acidic and basic pH. In both cases. the EPR spectra are similar to those obtained from unsubstituted isoalloxazines. with no indication of hyperfine splitting due to the cyano nitrogen. Laser photolysis of I in the presence of EDTA at basic pH generates two radical species. One of these decays rapidly by a first-order process to produce thc stable radical. The rate of this decay depends upon the initial flavin concentration, thus suggesting a reaction of the radical with oxidized isoalloxazine. The rates of reaction of the radical species with added oxidants (O2, ferricyanide), and the pH-dependence of stable radical formation, indicate that the rapidly-decaying species is the anion radical of I, and that the stable radical is formed by its reaction with oxidized flavin. Laser photolysis of I at acidic pH, as well as of 8-cyano-5-deaza-isoalloxazine at acidic or basic pH, does not generate stable radical species. I-Deazaisoalloxazines do not give radical transients at all upon laser photolysis.  相似文献   

15.
Magnetic field effect studies of alkylcobalamin photolysis provide evidence for the formation of a reactive radical pair that is born in the singlet spin state. The radical pair recombination process that is responsible for the magnetic field dependence of the continuous-wave (CW) quantum yield is limited to the diffusive radical pair. Although the geminate radical pair of adenosylcob(III)alamin also undergoes magnetic field dependent recombination (A. M. Chagovetz and C. B. Grissom, J. Am. Chem. Soc. 115, 12152–12157, 1993), this process does not account for the magnetic field dependence of the CW quantum yield that is only observed in viscous solvents. Glycerol and ethylene glycol increase the microviscosity of the solution and thereby increase the lifetime of the spin-correlated diffusive radical pair. This enables magnetic field dependent recombination among spin-correlated diffusive radical pairs in the solvent cage. Magnetic field dependent recombination is not observed in the presence of nonviscosigenic alcohols such as isopropanol, thereby indicating the importance of the increased microviscosity of the medium. Paramagnetic radical scavengers that trap alkyl radicals that escape the solvent cage do not diminish the magnetic field effect on the CW quantum yield, thereby ruling out radical pair recombination among randomly diffusing radical pairs, as well as excluding the involvement of solvent-derived radicals. Magnetic field dependent recombination among alkylcobalamin radical pairs has been simulated by a semiclassical model of radical pair dynamics and recombination. These calculations support the existence of a singlet radical pair precursor.  相似文献   

16.
A sulfonyl radical induced selenosulfonation and thiosulfonation with olefins by using sodium arylsulfinate as sulfonyl radical precursor is described. Phenyldiselenide and phenyldisulfide are used as free radical acceptors.  相似文献   

17.
It is challenging to achieve stable and efficient radical emissions under ambient conditions. Herein, we present a rational design strategy to protect photoinduced carbonyl free radical emission through electrostatic interaction and spin delocalization effects. The host-guest system is constructed from tricarbonyl-substituted benzene molecules and a series of imidazolium ionic liquids as the guest and host, respectively, whereby the carbonyl anion radical emission can be in situ generated under the light irradiation and further stabilized by electrostatic interaction. More importantly, the anion species and the alkyl chain length of imidazolium ionic liquids show a noticeable effect on luminescence efficiency, with the highest radical emission efficiency is as high as 53.3 % after optimizing the imidazole ionic liquid's structure, which is about four times higher than the polymer-protected radical system. Theoretical calculations confirm the synergistic effect of strong electrostatic interactions and that the spin delocalization effect significantly stabilizes the radical emission. Moreover, such a radical emission system also could be integrated with a fluorescent dye to induce multi-color or even white light emission with reversible temperature-responsive characteristics. The radical emission system can also be used to detect different amine compounds on the basis of the emission changes and photoactivation time.  相似文献   

18.
Prefluorescent radical probes, in which fluorescence is activated by radical trapping, and photoinitiators were used to detect radical generation in polymer films using fluorescence spectroscopy and microscopy. Prefluorescent radical probes are the foundation of a fluorescence imaging system for polymer films, that may serve both as a mechanistic tool in the study of photoinitiated radical processes in polymer films and in the preparation of functional fluorescent images.  相似文献   

19.
Horner JH  Lal M  Newcomb M 《Organic letters》2006,8(24):5497-5500
The kinetics of radical heterolysis reactions, including rate constants for radical cation-anion contact ion pair formation, collapse of the contact pair back to the parent radical, and separation of the contact pair to a solvent-separated ion pair or free ions were obtained in several solvents for a beta-mesyloxy radical. Rate constants were determined from indirect kinetic studies using thiophenol as both a radical trapping agent via H-atom transfer and an alkene radical cation trapping agent via electron transfer. [reaction: see text].  相似文献   

20.
In the "cycloketyl radical mediated living polymerization"(CMP) process, a cycloketyl compound, [9,9′]bixanthenyl-9,9′ diol(BIXAN) was ultilized as initiator and mediator. The cycloketyl(CK) radical was used as the dormant radical to achieve the increase of molecular weight. Herein, a series of cycloketyl thioketones were synthesised by Lawesson's reagent by one step reaction with high yeild,and we found that, when a special cycloketyl thioketone compound, thioxanthene-9-thione(TXT), was added to a routine radical polymerization system, TXT could capture chain radical, and simultaneously formed an radical analogous to CK radical in structure,which could trigger the growth of polymer chains. This simple system was efficient to initiate the polymerization of methyl methacrylate(MMA) and in all cases the molecular weights increased with the increase of conversions. By the end-group analysis with 1 H-NMR and MALDI-TOF MS, it was confirmed that the P-STXT radical was used to control the polymerization. The re-initiating reactions were achieved when PMMA was used as the macro-initiator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号