首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms and dynamics studies of the OH radical and Cl atom with CF(3)CHClOCHF(2) and CF(3)CHFOCHF(2) have been carried out theoretically. The geometries and frequencies of all the stationary points are optimized at the B3LYP/6-311G(d,p) level, and the energy profiles are further refined by interpolated single-point energies (ISPE) method at the G3(MP2) level of theory. For each reaction, two H-abstraction channels are found and four products (CF(3)CHFOCF(2), CF(3)CFOCHF(2), and CF(3)CHClOCF(2), CF(3)CClOCHF(2)) are produced during the above processes. The rate constants for the CF(3)CHClOCHF(2)/CF(3)CHFOCHF(2) + OH/Cl reactions are calculated by canonical variational transition-state theory (CVT) within 200-2000 K, and the small-curvature tunneling is included. The total rate constants calculated from the sum of the individual rate constants and the branching ratios are in good agreement with the experimental data. The Arrhenius expressions for the reactions are obtained. Our calculation shows that the substitution of Cl by F decreases the reactivity of CF(3)CHClOCHF(2) toward OH and Cl. In addition, the mechanisms of subsequent reactions of product radicals and OH radical are further investigated at the G3(MP2)//B3LYP/6-311G(d,p) level, and the main products are predicted in the this article.  相似文献   

2.
Reaction mechanisms for the interactions between CeO(2)(111) and (110) surfaces are investigated using periodic density functional theory (DFT) calculations. Both standard DFT and DFT+U calculations to examine the effect of the localization of Ce 4f states on the redox chemistry of H(2)-CeO(2) interactions are described. For mechanistic studies, molecular and dissociative local minima are initially located by placing an H(2) molecule at various active sites of the CeO(2) surfaces. The binding energies of physisorbed species optimized using the DFT and DFT+U methods are very weak. The dissociative adsorption reactions producing hydroxylated surfaces are all exothermic; exothermicities at the DFT level range from 4.1 kcal mol(-1) for the (111) to 26.5 kcal mol(-1) for the (110) surface, while those at the DFT+U level are between 65.0 kcal mol(-1) for the (111) and 81.8 kcal mol(-1) for the (110) surface. Predicted vibrational frequencies of adsorbed OH and H(2)O species on the surfaces are in line with available experimental and theoretical results. Potential energy profiles are constructed by connecting molecularly adsorbed and dissociatively adsorbed intermediates on each CeO(2) surface with tight transition states using the nudged elastic band (NEB) method. It is found that the U correction method plays a significant role in energetics, especially for the intermediates of the exit channels and products that are partially reduced. The surface reduction reaction on CeO(2)(110) is energetically much more favorable. Accordingly, oxygen vacancies are more easily formed on the (110) surface than on the (111) surface.  相似文献   

3.
Vibronic states are observed in single C(60) and C(70) molecules by scanning tunneling microscopy. When single fullerene molecules are adsorbed on a thin layer of Al(2)O(3) grown on a NiAl(110) substrate, equally spaced features are observed in the differential conductance (dI/dV), which are clearly resolved in d(2)I/dV(2) spectra. These features are attributed to the vibronic states of the molecule. The vibronic progressions are sensitive to the molecular orientations and can have different spacings in different electronic bands of the same molecule. For C(60,) these vibronic states are associated with the intramolecular A(g) and H(g) vibrational modes. Vibronic states are not resolved in molecules adsorbed on the metal surface. However, inelastic electron tunneling spectroscopy exhibits a vibrational mode at 64 meV for C(60) and 61 meV for C(70) adsorbed on NiAl(110).  相似文献   

4.
The mechanisms and kinetics studies of the OH radical with alkyl hydroperoxides CH(3)OOH and CH(3)CH(2)OOH reactions have been carried out theoretically. The geometries and frequencies of all the stationary points are calculated at the UBHandHLYP/6-311G(d,p) level, and the energy profiles are further refined by interpolated single-point energies method at the MC-QCISD level of theory. For two reactions, five H-abstraction channels are found and five products (CH(3)OO, CH(2)OOH, CH(3)CH(2)OO, CH(2)CH(2)OOH, and CH(3)CHOOH) are produced during the above processes. The rate constants for the CH(3)OOH/CH(3)CH(2)OOH + OH reactions are corrected by canonical variational transition state theory within 250-1500 K, and the small-curvature tunneling is included. The total rate constants are evaluated from the sum of the individual rate constants and the branching ratios are in good agreement with the experimental data. The Arrhenius expressions for the reactions are obtained.  相似文献   

5.
Pd(4)Br(4)Te(3) was prepared from Pd, Te, and PdBr(2) at 700 K. Its structure was determined by single-crystal X-ray diffraction to be triclinic, P$\bar 1$, Pearson symbol aP22; a=842.5(2), b=845.0(3), c=864.8(3) pm; alpha=82.55(3), beta=73.36(2), gamma=88.80(2) degrees ; Z=2. The Br and Te atoms are arranged according to the motif of cubic closest-packed spheres in which every 15th position is vacant; the Pd atoms occupy 8/15 of the octahedral voids. The symmetry relations with the packing of spheres are derived. Prominent structural units are hollow cuboctahedral [(PdBrTe)(6)] units, the Pd atoms are positioned near the centers of the square faces of the Br(6)Te(6) cuboctahedra; the cuboctahedra and double-octahedral Pd(2)Br(4)Te(6) units are connected to strands by sharing triangular Te(3) faces. The strands are condensed by common Br atoms into layered assemblies. Conspicuously close Te--Te contacts in the Te(3) triangles indicate attractive Te--Te interactions. The valence puzzle is resolved by the formula Pd(+II)(4)Br(-I)(4)Te(-4/3)(3). Positive Te--Te Mulliken orbital populations and the Pd--K, Br--K, and Te--L(III) XANES spectra of Pd(4)Br(4)Te(3) referenced to the spectra of PdBr(2), K(2)PdBr(6), PdTe, and PdTe(2) are in accord with attractive Te--Te interactions. The measured semiconducting and diamagnetic properties are compatible with the derived picture of chemical bonding in Pd(4)Br(4)Te(3).  相似文献   

6.
To determine the geometries of the most stable hept-C(62)X(2) (X = F, Cl, and Br) isomers, all 967 possible hept-C(62)F(2) isomers have been orderly optimized using AM1, HF/STO-3G, B3LYP/3-21G, and B3LYP/6-31G* methods, and chlorofullerenes and bromofullerenes, which are isostructural with five most stable hept-C(62)F(2) isomers, were regarded as candidates of the most stable isomer, and optimized at the B3LYP/6-31G* level. The results reveal that 2,9- and 9,62-hept-C(62)X(2) (X = F, Cl, and Br) are the two most stable isomers with slight energy difference. The halogenation releases strain energy of hept-C(62), and all halogenated fullerenes are more chemically stable than hept-C(62) with lower E(HOMO) and higher E(LUMO). All five most stable hept-C(62)X(2) (X = F, Cl, and Br) isomers are energetically favorable, and their thermodynamic stability decreases along with the increase of sizes of addends. Only hept-C(62)F(2) isomers show high thermodynamic stability, and they are potentially synthesized in experiments. 59,62-squ-C(62)X(2) (X = F, Cl, and Br) were computed for comparison, and they are found to be more stable than their heptagon-containing isomers.  相似文献   

7.
Neutral Mg(m)C(n)H(x) and Be(m)C(n)H(x) clusters are investigated both experimentally and theoretically for the first time. Single photon ionization at 193 nm is used to detect neutral cluster distributions through time of flight mass spectrometry. Mg(m)C(n)H(x) and Be(m)C(n)H(x) clusters are generated through laser ablation of Mg or Be foil into CH(4)/He expansion gas. A number of members of each cluster series are identified through isotopic substitution experiments employing (13)CH(4) and CD(4) instead of CH(4) in the expansion gas. An oscillation of the vertical ionization energies (VIEs) of Mg(m)C(n)H(x) clusters is observed in the experiments. The VIEs of Mg(m)C(n)H(x) clusters are observed to vary as a function of the number of H atoms in the clusters. Density functional theory (DFT) and ab initio (MP2) calculations are carried out to explore the structures and ionization energies of Mg(m)C(n)H(x) clusters. Many Be(m)C(n)H(x) clusters are also generated and detected in the experiments. The structures and VIEs of Be(m)C(n)H(x) clusters are also studied by theoretical calculations. Calculational results provide a good and consistent explanation for the experimental observations, and are in general agreement with them for both series of clusters.  相似文献   

8.
半导体光催化剂的表面修饰   总被引:80,自引:5,他引:80  
从半导体光催化剂表面修饰的类型、机理及效果出发,对其研究进展作了综合评述.  相似文献   

9.
Reactions of small neutral iron oxide clusters (FeO(1-3) and Fe(2)O(4,5)) with carbon monoxide (CO) are investigated by experiments and first-principle calculations. The iron oxide clusters are generated by reaction of laser-ablation-generated iron plasma with O(2) in a supersonic expansion and are reacted with carbon monoxide in a fast flow reactor. Detection of the neutral clusters is through ionization with vacuum UV laser (118 nm) radiation and time-of-flight mass spectrometry. The FeO(2) and FeO(3) neutral clusters are reactive toward CO, whereas Fe(2)O(4), Fe(2)O(5), and possibly FeO are not reactive. A higher reactivity for FeO(2) [sigma(FeO(2) + CO) > 3 x 10(-17) cm(2)] than for FeO(3) [sigma(FeO(3) + CO) approximately 1 x 10(-17) cm(2)] is observed. Density functional theory (DFT) calculations are carried out to interpret the experimental observations and to generate the reaction mechanisms. The reaction pathways with negative or very small overall barriers are identified for CO oxidation by FeO(2) and FeO(3). The lower reactivity of FeO(3) with respect to FeO(2) may be related to a spin inversion process present in the reaction of FeO(3) with CO. Significant reaction barriers are calculated for the reactions of FeO and Fe(2)O(4-5) with CO. The DFT results are in good agreement with experimental observations. Molecular-level reaction mechanisms for CO oxidation by O(2), facilitated by condensed phase iron oxides as catalysts, are suggested.  相似文献   

10.
Co(II), Ni(II) and Cu(II) complexes are synthesized with thiosemicarbazone (L(1)) and semicarbazone (L(2)) derived from pyrole-2-carboxyaldehyde. These complexes are characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, mass, IR, electronic and EPR spectral studies .The molar conductance measurements of the complexes in DMSO correspond to non-electrolytic nature except Co(L1)2(NO3)2 and Ni(L1)2(NO3)2 complexes which are 1:2 electrolytes. All the complexes are of high-spin type. On the basis of spectral studies an octahedral geometry may be assigned for Co(II) and Ni(II) complexes except Co(L1)2(NO3)2 and Ni(L1)2(NO3)2 which are of tetrahedral geometry. A tetragonal geometry may be suggested for Cu(II) complexes.  相似文献   

11.
Theoretical investigations are carried out on the multiple-channel reactions, CH(3) + SiH(CH(3))(3) → products and CF(3) + SiH(CH(3))(3) → products. The minimum energy paths (MEP) are calculated at the MP2/6-311 + G(d,p) level, and energetic information is further refined by the MC-QCISD (single point) method. The rate constants for major reaction channels are calculated by the canonical variational transition state theory (CVT) with small-curvature tunneling (SCT) correction over the temperature range 200-1500 K. The theoretical rate constants are in good agreement with the available experimental data and are found to be k(1a)(T) = 1.93 × 10(-24) T(3.15) exp(-1214.59/T) and k(2a)(T) = 1.33 × 10(-25) T(4.13) exp(-397.94/T) (in unit of cm(3) molecule(-1) s(-1)). Our calculations indicate that hydrogen abstraction channel from SiH group is the major channel due to the smaller barrier height among five channels considered.  相似文献   

12.
An ab initio study has been carried out to determine the structures, relative stabilities, and spin-spin coupling constants of a set of 17 methyl-substituted 1,3-diborata-2,4-diphosphoniocyclobutanes B(2)P(2)(CH(3))(n)H(8-n), for n = 0, 1, 2, 4, with four-member B-P-B-P rings. The B-P-B-P rings are puckered in a butterfly conformation, in agreement with experimental data for related molecules. Isomers with the CH(3) group bonded to P are more stable than those with CH(3) bonded to B. If there is only one methyl group or if two methyl groups are bonded to two different P or B atoms, isomers with equatorial bonds are more stable than those with axial bonds. However, when two methyl groups are present, the gem isomers are the most stable for molecules B(2)P(2)(CH(3))(2)H(6) with P-C and B-C bonds, respectively. Transition structures present barriers to the interconversion of two equilibrium structures or to the interchange of axial and equatorial positions in the same isomer. These barriers are very low for the isomer with two methyl groups bonded to B in axial positions for the isomer with four axial bonds and for the isomer with geminal B-C bonds at both B atoms. Coupling constants (1)J(B-P), (1)J(P-C), (1)J(B-C), (2)J(P-P), and (3)J(P-C) are capable of providing structural information. They are sensitive to the number of methyl groups present and can discriminate between axial, equatorial, and geminal bonds, although not all do this to the same extent. The one-bond coupling constants (1)J(B-P), (1)J(P-C), and (1)J(B-C) are similar in equilibrium and transition structures, but (3)J(P-C) and (2)J(P-P) are not. These coupling constants and those of the corresponding fluoro-derivatives of the 1,3-diborata-2,4-diphosphoniocyclobutanes demonstrate the great sensitivity of phosphorus coupling to structural and electronic effects.  相似文献   

13.
A new procedure for the determination of inorganic arsenic (III,V) and antimony (III,V) in water samples by dispersive liquid–liquid micro extraction separation and electrothermal atomic absorption spectrometry (ETAAS) is presented. At pH 1, As(III) and Sb(III) are complexed with ammonium pyrrolidine dithiocarbamate and extracted into the fine droplets formed when mixing carbon tetrachloride (extraction solvent), methanol (disperser solvent) and the sample solution. After extraction, the phases are separated by centrifugation, and As(III) and Sb(III) are determined in the organic phase. As(V) and Sb(V) remain in the aqueous layer. Total inorganic As and Sb are determined after the reduction of the pentavalent forms with sodium thiosulphate. As(V) and Sb(V) are calculated by difference. The detection limits are 0.01 and 0.05 µg L− 1 for As(III) and Sb(III), respectively, with an enrichment factor of 115. The relative standard deviation is in the 2.9–4.5% range. The procedure has been applied to the speciation of inorganic As and Sb in bottled, tap and sea water samples with satisfactory results.  相似文献   

14.
The adsorption of (R)- and (S)-2-phenylpropionamide (PPA, C(9)H(11)ON) molecules on a Cu(111) surface has been investigated using the density functional method with supercell models. The adsorption orientations of both (R)- and (S)-PPA molecules on the surface are the same: the phenyl rings are approximately parallel to the Cu(111) surface and positioned in the hollow sites, the amino and methyl groups occupy two-bridge sites, and the carbonyl occupies the top site. After the adsorption, the bond lengths in the two enantiomers are almost unchanged, but the changes for two dihedral angles show differences, especially for (R)-PPA molecule. The first angles between the (N,C9,C7) plane and the (C9,C7,C6) plane are 19.4 and 0.7 degrees for (R)- and (S)-PPA molecules, respectively, and the second angles between the (C8,C7,C6) plane and the (C7,C6,C5) plane are 74.8 and 0.4 degrees for (R)- and (S)-PPA molecules, respectively. The adsorption energies of (R)- and (S)-PPA molecules are calculated to be -34 and -26 kJ mol(-1), respectively. The simulated scanning tunneling microscopy (STM) images of (R)- and (S)-PPA molecules on the Cu(111) surface display different features and are coincident with the experimental ones. The interaction between the adsorption molecule and the metal surface is found to be responsible for the discrimination of (R)- and (S)-PPA molecules on the surface.  相似文献   

15.
The X-ray structures of imidazolylcobalamin (ImCbl) and histidinylcobalamin (HisCbl) are reported. These structures are of interest given that the recent structures of human and bovine transcobalamin prepared in their holo forms from aquacobalamin show a histidine residue of the metalloprotein bound at the beta-axial site of the cobalamin (Wuerges, J. et al. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 4386-4391). The beta-axial Co-N bond distances for ImCbl and HisCbl are 1.94(1) and 1.951(7) A, respectively. The alpha-axial Co-N bond distances to the 5,6-dimethylbenzimidazole are 2.01(1) and 1.979(8) A for ImCbl and HisCbl, respectively, and are typical for cobalamins with weak sigma-donor ligands at the beta-axial site. The corrin fold angles of 11.8(3) degrees (ImCbl) and 12.0(3) degrees (HisCbl) are smaller than those typically observed for cobalamins.  相似文献   

16.
Mn(II), Co(II), Ni(II) and Cu(II) complexes are synthesized with thiosemicarbazone (L) derived from pyrrole-2-carboxyaldehyde. These complexes are characterized by elemental analysis, molar conductance, magnetic susceptibility measurement, mass, IR, electronic and EPR spectral studies. The molar conductance measurement of the complexes in DMSO indicates that the complexes are non-electrolyte except Co(L)2(NO3)2 and Ni(L)2(NO3)2 complexes which are 1:2 electrolyte. All the complexes are of high-spin type. On the basis of spectral studies an octahedral geometry may be assigned for Mn(II), Co(II) and Ni(II) complexes except Co(L)2(NO3)2 and Ni(L)2(NO3)2 which are of tetrahedral geometry. A tetragonal geometry may be suggested for Cu(II) complexes.  相似文献   

17.
Short-lived (CF(3))(3)B and (CF(3))(3)BCF(2) are generated as intermediates by thermal dissociation of (CF(3))(3)BCO and F(-) abstraction from the weak coordinating anion [B(CF(3))(4)](-), respectively. Both Lewis acids cannot be detected because of their instability with respect to rearrangement reactions at the B-C-F moiety. A cascade of 1,2-fluorine shifts to boron followed by perfluoroalkyl group migrations and also difluorocarbene transfer reactions occur. In the gas phase, (CF(3))(3)B rearranges to a mixture of linear perfluoroalkyldifluoroboranes C(n)()F(2)(n)()(+1)BF(2) (n = 2-7), while the respective reactions of (CF(3))(3)BCF(2) result in a mixture of linear (n = 2-4) and branched monoperfluoroalkyldifluoroboranes, e.g., (C(2)F(5))(CF(3))FCBF(2). For comparison, the reactions of [CF(3)BF(3)](-) and [C(2)F(5)BF(3)](-) with AsF(5) are studied, and the products in the case of [CF(3)BF(3)](-) are BF(3) and C(2)F(5)BF(2) whereas in the case of [C(2)F(5)BF(3)](-), C(2)F(5)BF(2) is the sole product. In contrast to reports in the literature, it is found that CF(3)BF(2) is too unstable at room temperature to be detected. The decomposition of (CF(3))(3)BCO in anhydrous HF leads to a mixture of the new conjugate Br?nsted-Lewis acids [H(2)F][(CF(3))(3)BF] and [H(2)F][C(2)F(5)BF(3)]. All reactions are modeled by density functional calculations. The energy barriers of the transition states are low in agreement with the experimental results that (CF(3))(3)B and (CF(3))(3)BCF(2) are short-lived intermediates. Since CF(2) complexes are key intermediates in the rearrangement reactions of (CF(3))(3)B and (CF(3))(3)BCF(2), CF(2) affinities of some perfluoroalkylfluoroboranes are presented. CF(2) affinities are compared to CO and F(-) affinities of selected boranes showing a trend in Lewis acidity, and its influence on the stability of the complexes is discussed. Fluoride ion affinities are calculated for a variety of different fluoroboranes, including perfluorocarboranes, and compared to those of the title compounds.  相似文献   

18.
The synthesis, crystal growth, magnetic susceptibility, and polarized optical absorption spectra in the visible and near UV of (Et(4)N)(3)Fe(2)F(9) are reported. From single-crystal magnetic susceptibility data and high-resolution absorption spectra in the region of the (6)A(1) --> (4)A(1) spin-flip transition, exchange splittings in the ground and excited states are derived. Ferromagnetic ground and excited state exchange parameters J(GS) = -1.55 cm(-1) and J(ES) = -0.53 cm(-1) are determined, respectively, and the relevant orbital contributions to the net exchange are derived from the spectra. The results are compared with those reported earlier for the structurally and electronically analogous [Mn(2)X(9)](5-) pairs in CsMgX(3):Mn(2+) (X = Cl(-), Br(-)), in which the splittings are antiferromagnetic. This major difference is found to be due to the increased metal charge of Fe(3+) compared to Mn(2+), leading to orbital contraction and thus to a strong decrease of the orbital overlaps and hence the antiferromagnetic interactions.  相似文献   

19.
Pyridine/ethylenediamine solutions of [Sn(9)SnCy(3)](3-) (1) react with [Pd(PPh(3))(4)] to give new clusters [Pd@Sn(9)SnCy(3)](3-) (2) and [Pd@Sn(9)PdSnCy(3)](3-) (3), depending on stoichiometry. These compounds are formed sequentially and are the first transition metal derivates of exo-substituted Zintl clusters. Oxidative insertion of a Pd atom into the Pd@Sn(9)-SnCy(3) bond of 2 to form 3 represents a new reaction type for Zintl cluster compounds. The conversion Sn(9)(4-)→1→2→3 is a rare case in which charge and mass are conserved in a series of Zintl clusters. Complexes 1, 2, and 3 are all highly fluxional in solution. In all three clusters, the nine Sn vertices are in rapid exchange on the NMR timescale. In 1 and 2, the exo-SnCy(3) substituent also scrambles intramolecularly around the outside of the clusters. In 3, the SnCy(3) group remains attached to the vertex Pd atom. The disparate reactions with the other RSn(9)(3-) ions are discussed.  相似文献   

20.
利用高效液相色谱-飞行时间质谱联用的方法,分别对人参配伍山楂前后人参皂苷的变化进行分析,同时对人参皂苷Re、Rg1、Rb1、Rd与山楂配伍的水解规律进行系统研究,并与单独煎煮液、仿山楂配伍pH值煎煮液的水解产物进行比较,结果发现人参与山楂配伍后人参皂苷Rg1、Rb1含量明显减少,而人参皂苷Re、Rd、Rg2、Rg3、F2、Rh1含量明显增加,其中人参皂苷Re与山楂配伍后水解产物为人参皂苷20(R)-Rg2、20(S)-Rg2,仿山楂配伍pH值水解产物为人参皂苷20(R)-Rg2、20(S)-Rg2、Rg4、Rg6;人参皂苷Rg1与山楂配伍后水解产物为20(S)-Rh1、20(R)-Rh1,仿山楂pH值水解产物为20(S)-Rh1、20(R)-Rh1、Rh4、Rk3;人参皂苷Rb1与山楂配伍后水解产物为Rd、20(S)-Rg3,仿山楂pH值水解产物为F2、20(S)-Rg3;人参皂苷Rd与山楂配伍后水解产物为F2、20(S)-Rg3、20(R)-Rg3,仿山楂pH值水解产物为20(S)-Rg3、20(R)-Rg3。研究表明,不同人参皂苷和山楂配伍后与仿山楂pH值的水解产物并不相同,人参与山楂配伍改变了人参皂苷成分的种类及含量。本研究为临床方剂中人参与山楂配伍后成分的变化提供物质基础数据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号