首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Yasuhiro Aoki 《Tetrahedron》2005,61(46):10995-10999
The first systematic study on the aerobic oxidation of 1,3,5-triisopropylbenzene was examined by the use of N-hydroxyphthalimide (NHPI) as a key catalyst. It was found that 1,3,5-triisopropylbenzene was efficiently oxidized with O2 in the presence of a catalytic amount of NHPI and azobisisobutyronitrile (AIBN) at 75 °C. Upon treatment of the resulting products with sulfuric acid followed by acetic anhydride led to 5-acetoxy-1,3-diisopropylbenzene and 3,5-diacetoxy-1-isopropylbenzene as major products and a small amount of 1,3,5-triacetoxybenzene. When t-butylperoxypivalate (BPP) was employed as a radical initiator, the oxidation could be achieved in good yield even at 50 °C. This oxidation provides a facile method for preparing phenol derivatives bearing an isopropyl moiety, which can be used as pharmaceutical starting materials.  相似文献   

2.
Yasuhiro Aoki 《Tetrahedron》2005,61(22):5219-5222
Synthesis of phenol and cyclohexanone in one pot was examined by means of the NHPI-catalyzed aerobic oxidation of cyclohexylbenzene. The aerobic oxidation of cyclohexylbenzene catalyzed by NHPI followed by treatment with sulfuric acid afforded phenol and cyclohexanone in good selectivities. Thus, the reaction of cyclohexylbenzene under atmospheric dioxygen (1 atm) by NHPI at 100 °C for 3 h followed by treatment with 0.3 M sulfuric acid at room temperature for 2 h resulted in phenol and cyclohexanone in 96 and 91% selectivity, respectively, at 25% conversion. This method was successfully extended to the one-pot synthesis of 4-hydroxyacetophenone and cyclohexanone.  相似文献   

3.
Radical addition of 1,3-dimethyladamantane to diethyl acetylenedicarboxylate was catalyzed by NHPI combined with Co species under O2 to give different adducts, ethyl 2-(3,5-dimethyladamantyl)-2-oxoethanoate and a normal adduct whose ratio was found to depend on the O2 concentration of the reaction system.  相似文献   

4.
5.
Naruhisa Hirai 《Tetrahedron》2006,62(28):6695-6699
The oxidation of trimethylbenzenes was examined with air or O2 using N,N′,N″-trihydroxyisocyanuric acid (THICA) as a key catalyst. Thus, 1,2,3-, 1,2,4-, and 1,3,5-trimethylbenzenes under air (20 atm) in the presence of THICA (5 mol %), Co(OAc)2 (0.5 mol %), Mn(OAc)2, and ZrO(OAc)2 at 150 °C were oxidized to the corresponding benzenetricarboxylic acids in good yields (81-97%). In the aerobic oxidation of 1,2,4-trimethylbenzene by the THICA/Co(II)/Mn(II) system, remarkable acceleration was observed by adding a very small amount of ZrO(OAc)2 to the reaction system to form 1,2,4-benzenetricarboxylic acid in excellent yield (97%). In contrast, no considerable addition effect was observed in the oxidation of 1,3,5-trimethylbenzene. This aerobic oxidation by the present catalytic system provides an economical and environmentally benign direct method to benzenetricarboxylic acids, which are very important polymer materials.  相似文献   

6.
We developed a simple method for the direct synthesis of 2,2′-binaphthoquinones, utilizing oxidative dimerization via electron donor-acceptor complex formation of 1-naphthols with SnCl4 in the presence of dioxygen. This oxidation involves a catalytic cycle of SnCl4, and the reaction mechanism is discussed. As an application of this method to natural products synthesis, we describe facile biomimetic syntheses of the binaphthoquinones 3,3′-bijuglone, 3,3′-biplumbagin and elliptinone.  相似文献   

7.
江文辉  周亚平  唐瑞仁  李菲 《应用化学》2009,26(11):1305-1309
以分子氧(O2)为氧化剂,在无溶剂条件下,研究了N-羟基邻苯二甲酰亚胺/乙酰丙酮亚钴(Ⅱ)体系对α-紫罗兰酮的催化氧化反应,分析了氧化产物,主要得到α-紫罗兰酮的烯丙位氧化产物5-氧代-α-紫罗兰酮,同时生成少量环氧α-紫罗兰酮及重排产物4-氧代-β-紫罗兰酮和环氧β-紫罗兰酮,提出了可能的反应机理,化合物的结构经IR, 1H NMR, MS和EA等手段得以表征;为了提高5-氧代-α-紫罗兰酮的选择性和催化氧化反应的转化率,优化了催化氧化反应的工艺条件:当反应温度为70 ℃,氧气压力为1.0 MPa,N-羟基邻苯二甲酰亚胺和乙酰丙酮亚钴(Ⅱ)用量分别为α-紫罗兰酮的25%和1.0%,反应10 h,5-氧代-α-紫罗兰酮的产率达53.4%,反应转化率达95.0%以上,平行实验表明,实验重复性良好。  相似文献   

8.
(±)-epi-Conocarpan 1 was synthesized via the key intermediate 5-bromo-cis-2-(4-methoxyphenyl)-3-methyl-2,3-dihydrobenzofuran 6 which was synthesized by a ruthenium(II) porphyrin-catalyzed intramolecular C-H insertion reaction using aryl tosylhydrazone salt 5 as the carbene source, starting from the commercially available 5-bromo-2-hydroxyacetophenone.  相似文献   

9.
A rapid, reliable, and atom-economical procedure for the novel axially biphenyl diamine, (R,R,Sax)-PD-BIPHAM 1, has been developed successfully by using highly efficient central-to-axial transformation strategy. The attractive feature of this methodology is that no tedious resolution was needed. The effectiveness of this new chiral skeleton was initially demonstrated by highly enantioselective hydrogenation of α-dehydroamino acid esters.  相似文献   

10.
The enantioselective alkynylation of aldimines with terminal acetylenes catalyzed by chiral Cu(I) complexes with (R)-2,2′-di(2-aminoaryloxy)-1,1′-binaphthyl ligands (7) was examined. Chiral C2-symmetric N,N-ligands 7, which have primary aniline moieties, were readily prepared from inexpensive (R)-1,1′-binaphthol (BINOL) as a chiral source. In particular, the reaction of N-benzylidenebenzeneamine 1a with phenylacetylene 2a proceeded smoothly in the presence of 5 mol % of (CuOTf)2·C6H5CH3 and 10 mol % of (R)-7d at room temperature for 24 h, and the corresponding propargylamine 3a was obtained with up to 82% ee.  相似文献   

11.
We describe a convenient scalable synthesis of 4-carbomethoxy-6,6′-dimethyl-2,2′-bipyridine based on the application of modified Negishi cross-coupling conditions. The use of this building block in the preparation of a number of dissymmetrically 6,6′-trisubstituted-2,2′-bipyridines and of bifunctional lanthanide chelators is also reported.  相似文献   

12.
13.
The new (R)-6,6′-bis(trifluoromethanesulfonyl)-2,2′-dihydroxy-1,1′-binaphthyl (1) has been synthesized and proved to generate highly active zirconium-based catalysts for asymmetric Mannich-type reactions.  相似文献   

14.
The synthesis of the highly constrained adenosine derivative 7 featuring at spirothietane at C-4, which may be considered as a rigid analogue of MTA, is described.  相似文献   

15.
A simple and efficient method for the preparation of 5′-O(N)-carbamyl and 5′-O(N)-polycarbamyl nucleoside derivatives is reported. The method consisted of treatment of 2′,3′-O-protected purine (Ado, Ino) or pyrimidine nucleosides (Thd, Urd) with trichloroacetylisocyanate, followed by cleavage of the trichloroacetyl moiety by silica-gel promoted methanolysis during column chromatography. Iterative application of this method gave mono, di, and tricarbamyl derivatives in good to excellent yields (ave = 80%).  相似文献   

16.
The facile synthesis of a series of aromatic 6,6-spiroacetals based on the parent 3,4,3′,4′-tetrahydro-2,2′-spirobis(2H-1-benzopyran) heterocyclic system is reported. Key steps included the use of a Sonogashira coupling for the synthesis of an aryl acetylene that was coupled to an aryl aldehyde to form a propargyl alcohol intermediate. Hydrogenation of the alkynol followed by oxidation produced a masked dihydroxy ketone that upon treatment with trimethylsilyl bromide underwent deprotection and cyclisation to the fused aromatic spiroacetal.  相似文献   

17.
The preparation of new chiral 1,3-diamine ligand systems based on the 1,1′-methylene-bis(1,1′,2,2′,3,3′,4,4′-octahydroisoquinoline) framework is described. Synthesis of various mono-, di-, and bridged N-alkyl derivatives are presented. Resolution of one compound, its Cu(I)Br X-ray crystallographic structure and the preliminary results on its application in the enantioselective Henry and Aldol reactions are disclosed.  相似文献   

18.
Yasuhiro Aoki 《Tetrahedron》2006,62(11):2497-2500
Aerobic oxidation of hydroaromatic compounds and diarylalkanes by N-hydroxyphthalimide (NHPI) under mild conditions afforded the corresponding hydroperoxides in high selectivity. Treatment of the resulting hydroperoxides with sulfuric acid followed by neutralization by a base resulted in phenol and aromatic aldehydes in high selectivity. This method provides a convenient synthetic route to aldehydes involving an aromatic moiety.  相似文献   

19.
Three novel Cu(II)-pyrazine-2,3-dicarboxylate complexes with 1,3-propanediamine (pen), [Cu2(μ-pzdc)2(pen)2] · 2H2O (1), N,N,N,N′-tetramethylethylenediamine (tmen), {[Cu(μ-pzdc)(tmen)] · H2O}n(2), and 2,2′-bipyridine (bipy), {[Cu(μ-pzdc)(bipy)]·H2O}n(3) have been synthesized and characterized by means of elemental and thermal analyses, magnetic susceptibilities, IR and UV/vis spectroscopic studies. The molecular structures of dinuclear (1) and polynuclear (2 and 3) complexes have been determined by the single crystal X-ray diffraction technique. The pyrazine-2,3-dicarboxylate acts as a bridging ligand through oxygen atom of carboxylate group and N atom of pyrazine ring and one oxygen atom of neighboring carboxylate. It links the Cu(II) ions to generate a distorted square pyramidal geometry forming a one-dimensional (1D) chain. Adjacent chains of 1 and 2 are then mutually linked via hydrogen bonding interactions, which are further assembled to form a two and three-dimensional network, respectively. The chains of complex 3 are further constructed to form three-dimensional framework by hydrogen bonding, C–H?π and ring?ring stacking interactions. In the complexes, Cu(II) ions have distorted square pyramidal geometry. Thermal analyses properties and thermal decomposition mechanism of complexes have been investigated by using thermal analyses techniques (TG, DTG and DTA).  相似文献   

20.
Jian-Shu Xie  Yan-Yan Fang 《Tetrahedron》2004,60(22):4875-4878
A simple synthetic route has been developed to prepare 1′-H-spiro(indoline-3,4′-piperidine) (1d). Dialkylation of 2-fluorophenylacetonitrile with N-(tert-butyloxycarbonyl)-bis(2-chloroethyl)amine (5) gave 6. Deprotection of Boc followed by cyclization resulted 1d in 67% overall yield. Selective Boc or Cbz protection of 1′-N gave 1a or 1b with 90 and 85% yield, respectively. Thus, in a five-step procedure, 1a and 1b were synthesized from commercially available reagents in over 50% overall yield. All 3 compounds (1a, 1b and 1d) can be utilized as templates to synthesize compounds for GPCR targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号