首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(Nonafluoro-tert-butyloxy)ethyl tosylate 4 was prepared in 65% yield from nonafluoro-tert-butanol 1 using commercially available reagents. Further reaction of 4 with HNR1R2 (R1 = R2 = H, CH3; R1 = H, R2 = CH3, (CH2)3C8F17, CH2CH2OC(CF3)3) affords the appropriate (CF3)3COCH2CH2NR1R2 amines in 20-69% yields. Improved overall yields of [(CF3)3COCH2CH2]3−nNRn to 1 were obtained by the reaction of (CF3)3CONa 2 and (XCH2CH2)3−nNRn (X = Cl, n = 0, 1, 2, R = CH3; X = CH3SO2O, n = 1, R = CH3SO2) nitrogen mustards and a similar reactive β-substituted ethyl amine. The title amines are mobile colorless liquids and volatile with steam. The bulky fluorous ponytail (CF3)3CO(CH2)2 displays high acidic stability and increases fluorous character almost as much as the classical straight-chain C8F17(CH2)3 ponytail.  相似文献   

2.
Fluorinated alkoxide complexes of zinc were synthesized for possible use as precursors to fluorine-doped ZnO films. Diethyl zinc reacted with fluorinated alcohols to form [EtZn(ORf)]n (Rf = CH(CF3)2, CMe2CF3, CMe(CF3)2) compounds. The [EtZn(ORf)]n compounds reacted with excess pyridine to yield the pyridine adducts [EtZn(py)(μ-ORf)]2. The X-ray structure of [EtZn(py){μ-OCH(CF3)2}]2 showed that it has virtual Ci symmetry.  相似文献   

3.
Gemini-type hybrid surfactants with two fluorocarbon chains connected through a hydrocarbon spacer, F(CF2)m(CH2)2CH(OSO3Na)(CH2)nCH(OSO3Na)(CH2)2(CF2)mF [Fm(Hn)FmOS, m = 4, 6; n = 5, 6, 7, 8)], were synthesized and their surface chemical properties were examined with the aim to have highly functional and highly water-soluble fluorinated surfactants when compared with the conventional fluorinated surfactants. Comparisons of the surface chemical properties of the synthesized gemini-type hybrid surfactants with those of monounit-type hybrid surfactants, F(CF2)m(CH2)2CH(OSO3Na)(CH2)nH [FmEHnOS, m = 4, 6; n = 3, 5)], revealed that gemination causes a remarkable lowering (about 1/100) in cmc value while it produces little changes in Krafft point (below 0 °C) and surface tension at cmc (γcmc).  相似文献   

4.
A series of partially fluorinated ethers PFE-m,n with general formula F(CF2)mCH2CH2O(CH2)nH (m = 4, 6, 8 and n = 2, 3, 5, 8, 14, 18, 21) has been synthesized and characterized. The present work aimed to investigate the synthesis of PFE-m,n and evaluate some of their fundamental physico-chemical properties such as: specific gravity, refractive index, viscosity, solid-solid transitions, solubility and amphiphile surface activity in a variety of solvents. Further, a comparison between PFE-m,n and the well known semifluorinated n-alkanes F(CF2)m-(CH2)nH (FHm, n) with the same value of the m/n ratio have been reported.  相似文献   

5.
Alkali metal, copper, nickel and rhodium complexes of alkylated [S2COC8H17] and fluoroalkylated xanthate ligands [S2COCmH2mCnF2n+1] (m = 2, n = 4, 6; m = 3, n = 1, 8) have been prepared in high yields and characterised by elemental analysis, mass spectrometry, IR and NMR spectroscopies. The structures of [Cu(S2COC8H17)(PPh3)2], [Cu(S2COC3H6CF3)(PPh3)2], [Ni(S2COC3H6CF3)2], [Cp*RhCl(S2COC8H17)] and [Cp*RhCl(S2COC3H6CF3)] have been determined by single crystal X-ray diffraction.  相似文献   

6.
Stable polyfluorinated bis- and tris-(alkoxy)methyl cations were prepared by the reaction of the corresponding difluoroformals (RfO)2CF2 (Rf = -CH2CF3, -CH(CF3)2, -CH2CF2Cl) with an excess of SbF5. Although the cation (CF3CH2O)2CF+ (1a) is stable at ambient temperature, the chlorinated analog (ClCF2CH2O)2CF+ (3a) can be generated only at low temperature in SO2ClF solvent and rapidly decomposes at ambient temperature. Although the salt [(CF3)2CHO]2CF+SbnF5n+1 (2a) is slightly more stable than the salt of cation 3a, at ambient temperature it undergoes rapid disproportionation with formation of equal amounts of [(CF3)2CHO]3C+SbnF5n+1 (2b) and CF3OCH(CF3)2 (2c). Stable solid salt 2b (n = 2) was isolated and fully characterized by 1H, 19F and 13C NMR spectroscopy and its structure was confirmed by single crystal X-ray diffraction.  相似文献   

7.
Debaprasad Mandal 《Tetrahedron》2010,66(5):1070-1077
Perfluoromethyldecalin solutions of the fluorous alkyl halides Rf8(CH2)mX (m=2, 3; X=Cl, I) are inert toward aqueous NaCl, KI, KCN, and NaOAc. However, substitution occurs at 100 °C in the presence of 10 mol % of the fluorous ammonium salts (Rf8(CH2)2)(Rf8(CH2)5)3N+ I (1) or (Rf8(CH2)3)4N+ Br (2) (10 mol %), which are fully or partially soluble in perfluoromethyldecalin under these conditions. Stoichiometric reactions of (a) 1 and Rf8(CH2)3Br, and (b) 2 and Rf8(CH2)2I are conducted in perfluoromethyldecalin at 100 °C, and yield the same Rf8(CH2)mI/Rf8(CH2)mBr equilibrium ratio (60-65:40-35). This shows that ionic displacements can take place in extremely nonpolar fluorous phases, and suggests a classical phase transfer mechanism for the catalyzed reactions. Interestingly, the non-fluorous ammonium salt mixture CH3(CH3(CH2)m)3N+ Cl (3, Aliquat® 336; m=2:1 7/9) also catalyzes halide substitutions, but under triphasic conditions with 3 suspended between the lower fluorous and upper aqueous layers. NMR experiments establish very low solubilities in both phases, suggesting interfacial catalysis.  相似文献   

8.
A series of triblock semifluorinated n-alkanes of general formula F(CF2)n(CH2)m(CF2)nF (n = 6, 8 and m = 4, 6, 8) have been synthesized and characterized. The synthesis of triblock compounds was performed in two different ways according to the length of the hydrogenated moiety. Coupling of two molecules of β-(perfluoro-n-alkyl)ethyl iodides leads to the triblock materials F(CF2)6(CH2)4(CF2)6F and F(CF2)8(CH2)4(CF2)8F. The synthesis of compounds with larger hydrogenated part is accomplished in two steps by the addition of perfluoro-n-alkyl iodide F(CF2)nI to 1,5-hexadiene and 1,7-octadiene, respectively to give the diiodo-adducts which are subsequently deiodinated to the final triblock products F(CF2)6(CH2)6(CF2)6F, F(CF2)6(CH2)8(CF2)6F, F(CF2)8(CH2)6(CF2)8F and F(CF2)8(CH2)8(CF2)8F. The obtained triblock semifluorinated n-alkanes are characterized by low surface free energies with good lubricant properties usable as additives in ski-wax formulations.  相似文献   

9.
Perfluoroalkyl- or nonafluoro-tert-butoxy-alkyl-substituted enantiopure amines having the structure PhCHCH3(NR1R2) [R1 = H, CH3; R2 = (CH2)3C8F17, (CH2)2OC(CF3)3; R1 = R2 = (CH2)3C8F17, (CH2)2OC(CF3)3] are obtained in high yields, when (S)-(−)-1-phenylethylamine is reacted with readily accessible alkylating reagents or fluorous 2° amines (R1 = H; R2 = (CH2)3C8F17, (CH2)2OC(CF3)3) are methylated in a Leuckart-Wallach reaction. The solubility patterns of these novel chiral amines and their hydrochlorides are qualitatively described for a broad spectrum of solvents and the fluorous partition coefficients of the free bases are determined by GC. A novel method for the resolution of enantiomers is disclosed here, which involves the use a half-equivalent of the selected resolving agent in solvent water that displays low solubility for the crystalline diastereomeric salt(s) formed even at temperatures near to its boiling point. Compound (S)-(−)-PhCHCH3[NH(CH2)3C8F17] is found to satisfy all the latter conditions and successfully used for the heat facilitated resolution of the title racemic acid. The circular dichroism (CD) spectra of six novel fluorous (S)-(−)-1-phenylethylamine derivatives are measured in ethanol, trifluoroethanol and hexafluoropropan-2-ol and discussed in detail.  相似文献   

10.
Fluorinated polyacrylats with side group containing vinylidene fluoride (VDF) units (CF3(CF2)n (CH2CF2)m, n = 3, 5; m = 1, 2) were successfully synthesized. The water and oil repellency properties of these polymers are similar to those of fluorinated polyacrylate with side group containing long perfluorooctyl group (CF3(CF2)7). The thermal telomerization of CF3(CF2)5I and CF3(CF2)3I with vinylidene fluoride (VDF) provided CF3(CF2)5CH2CF2I (1b) and CF3(CF2)3CH2CF2CH2CF2I (1c), respectively. The addition of 1b with ethylene followed by hydrolysis gave CF3(CF2)5CH2CF2CH2CH2OH (2b). Treatment of 1c with ethyl vinyl ether in the presence of Na2S2O4 followed by reduction produced CF3(CF2)3CH2CF2CH2CF2CH2CH2OH (2c). Fluoroacrylates 3b-d were prepared by acrylation of the corresponding fluoroalcohols 2b-d. The semi-continuous process emulsion co-polymerization of 3a-d with octadecyl acrylate and 2-hydroxylethyl acrylate initiated by (NH4)2S2O8 in the presence of a mixture emulsifiers of polyoxyethylene(10)nonyl phenyl ether (TX-10) and sodium lauryl sulfate provided stable latexes 4a-d, respectively. The water and oil repellency properties of 4b (Rf: CF3(CF2)5CH2CF2) and 4c (Rf: CF3(CF2)3CH2CF2CH2CF2) containing vinylidene fluoride (VDF) units were similar to those of 4a (Rf: CF3(CF2)7) containing long perfluoroalkyl group and much better than those of polymer 4d (Rf: CF3(CF2)3) with short perfluoroalkyl chain. Thus, polyacrylates containing vinylidene fluoride units showed promising aspects as the alternatives to the currently used water and oil repellent agents with long perfluoroalkyl chains.  相似文献   

11.
《Tetrahedron: Asymmetry》1999,10(14):2665-2674
Reactions of (menthyl)PH2 and H2CCHRf6 (menthyl=1R,3R,4S; Rfn=(CF2)n−1CF3) or H2CCHRf8 (AIBN, refluxing THF) give (menthyl)PH(CH2CH2Rfn) and then (menthyl)P(CH2CH2Rfn)2 (n=6, 7; n=8, 8), but with purification or other difficulties at each stage. Reactions of (menthyl)PCl2 with IMgCH2CH2Rfn give, under careful conditions, analytically pure 7 or 8 in 28–32% yields after distillation. Some Rfn(CH2)4Rfn also form. These represent the first chiral (and non-racemic) fluorous phosphines. Reactions of 7 or 8 with [Ir(COD)Cl]2 and CO give trans-[(menthyl)P(CH2CH2Rfn)2]2Ir(Cl)(CO) (n=6, 71%; 8, 51%) as analytically pure yellow oils. Their IR νCO values show the donor/acceptor properties of 7 and 8 to be intermediate between those of P((CH2)3Rf8)3 and P((CH2)4Rf8)3. The CF3C6F11:toluene partition coefficients of 7 and 8 (27°C, 78.4:21.6 and 93.7:6.3) are distinctly lower than those of P((CH2)2Rfn)3 (n=6, 98.8:1.2; n=8, >99.7:<0.3), reflecting the replacement of a linear C8–C10 group that is ca. 75–80% fluorinated by a cyclic C10 terpenyl group. Reactions of 7 or 8 with [Rh(COD)Cl]2 give [(menthyl)P(CH2CH2Rfn)2]Rh(Cl)(COD) (n=6, 69%; 8, 70%) as orange crystallizable oils.  相似文献   

12.
Fluorophilic ethers having the structure RC(CF3)2O(CH2)3CnF2n + 1 are obtained in high yields, when F-tert-butyl alcohol (R = CF3), F-acetone hydrate (R = O(CH2)3CnF2n + 1), F-pinacol (R = C(CF3)2O(CH2)3CnF2n + 1) are reacted with 3-perfluoroalkyl-1-propanols (CnF2n + 1(CH2)3OH, n = 4, 6, 8, 10) in a Mitsunobu reaction (Ph3P/DIAD [i-PrO2CN = NCO2Pr-i]/ether). The parent lipophilic ethers with the structure of (CF3)3CO(CH2)3CnH2n + 1 were prepared analogously using the corresponding fatty alcohols and F-tert-butyl alcohol. To achieve ideal separations, products were transferred to orthogonal phases relative to the other reaction components using fluorous extraction, fluorous solid-organic liquid filtration, or steam-distillation. Selected physical properties including melting and boiling point, together with fluorous partition coefficients of these ethers were determined and the figures obtained were qualitatively analyzed using relevant thermodynamic theories. Some of these ethers are liquids with rather low freezing points and are miscible with fluorocarbon solvents.  相似文献   

13.
Selective one-pot functionalization of methyl n-alkyl ketones, CnH2n+1COMe (n = 6-8) involving C-sp3-H bond cleavage with CO and various nucleophilic substrates [iPrOH, BuCH(Et)CH2OH, CF3CH2OH, (CF3)(Me)CHOH, H(CF2)2CH2OH, HCCCH2OH, furan, thiophene, and anisole] in the presence of the superelectrophilic system CBr4·2AlBr3 has been performed for the first time.  相似文献   

14.
Fluorinated organodifluoroboranes RfBF2 are in general suitable reagents to transform XeF2 and RIF2 into the corresponding onium tetrafluoroborate salts [RfXe][BF4] and [R(Rf)I][BF4], respectively. (4-C5F4N)BF2 and trans-CF3CFCFBF2 which represent boranes of high acidity form no Xe-C onium salts in reactions with XeF2 but give the desired iodonium salts with RIF2 (R = C6F5, o-, m-, p-C6FH4). The reaction of (4-C5F4N)BF2 with XeF2 ends with a XeF2-borane adduct. C6F5Xe(4-C5F4N), the first Xe-(4-C5F4N) compound, was obtained when C6F5XeF was reacted with Cd(4-C5F4N)2. We describe the synthesis of (4-C5F4N)IF2 and reactions of (4-C5F4N)IF2 and C6F5IF2 with (4-C5F4N)BF2. Analogous to [(4-C5F4N)2I][BF4] and [C6F5(4-C5F4N)I][BF4] aryl(perfluoroalkenyl)iodonium salts [R(R′)I][BF4] were obtained from RIF2 (R = C6F5, o-, m-, p-C6FH4) and R′BF2 (R′ = trans-CF3CFCF, CF2CF). The gas phase fluoride affinities pF of selected fluoroorganodifluoroboranes RfBF2 and their hydrocarbon analogs are calculated (B3LYP/6-31+G*) and discussed with respect to their potential to introduce Rf-groups into hypervalent EF2 bonds. Four aspects which influence the transformation of hypervalent EF2 bonds (E = Xe, R′I) under the action of Lewis acidic reagents RAFn−1 (A = B, P; n = 3, 5) into the corresponding [RE][AFn+1] salts are presented and the important role of the acidity is emphasized. Fluoride affinities may help to plan the introduction of organo groups into EF2 moieties and to expand the types of acidic reagents. Thus C6H5PF4 with a pF value comparable to that of RfBF2 compounds is able to introduce the C6H5 group into RIF2 (R = C6F5, p-C6FH4).  相似文献   

15.
New experimental results on perfluoroalkylation of C60 and C70 with the use of RfI (Rf = CF3, C2F5, n-C3F7, n-C4F9, and n-C6F13), along with a critical overview of the existing synthetic methods, are presented. For the selected new fullerene (Rf)n compounds we report spectroscopic, electrochemical and structural data, including improved crystallographic data for the isomers of C70(C2F5)10 and C60(C2F5)10, and the first X-ray structural data for the dodecasubstituted perfluoethylated C70 fullerene, C70(C2F5)12, which possesses unprecedented addition pattern.  相似文献   

16.
Most compounds designed for immobilization in fluorous media feature linear pony tails of the formula (CH2)m(CF2)n−1CF3 [(CH2)mRfn]. This paper presents a first-generation approach to compounds with branched or “split” pony tails of the formula (CH2)lCH[(CH2)mRfn]2. Allyl tri(n-butyl)tin is reacted twice with perfluorooctyl iodide (Rf8I; first, photochemical, 78-81%; second, thermal with radical initiator, 71%; 13-18 g scales) to give the secondary alkyl iodide ICH(CH2Rf8)2 (3). A subsequent Ni(Cl)2(PPh3)2-catalyzed reaction with allyl tri(n-butyl)tin yields the branched alkene H2CCHCH2CH(CH2Rf8)2 (74%). A palladium-catalyzed Heck coupling with OP(p-C6H4Br)3 gives the fluorous phosphine oxide OP(p-C6H4CHCHCH2CH(CH2Rf8)2)3 (84%), and Pd/C-catalyzed hydrogenation affords OP(p-C6H4(CH2)3CH(CH2Rf8)2)3 (>99%). Reduction with SiHCl3 gives P(p-C6H4(CH2)3CH(CH2Rf8)2)3, which is protected as the air-stable borane adduct H3B·P(p-C6H4(CH2)3CH(CH2Rf8)2)3 (9, 64%). The CF3C6F11/toluene partition coefficient of 9 is much higher than that of the analog with p-(CH2)3Rf8 groups (96.6:3.4 versus 37.3:62.7). The iodide 3 is unreactive towards PAr3 at 175-250 °C. However, a CuBr-catalyzed reaction with C6H5MgBr gives C6H5CH(CH2Rf8)2, which also exhibits a high partition coefficient (97.9:2.1).  相似文献   

17.
Dimethyl phosphorochloridate reacted with RFCH2NH2 in ether in the presence of Et3N to afford (MeO)2P(O)NHCH2RF, where RF = CF3 and C2F5, in 39 and 47% yield, respectively. Similar reactions with di-n-propyl and diisopropyl phosphorochloridates could be effected only with H2NCH2CF3 when 4-dimethylaminopyridine catalyst was added and (n-PrO)2P(O)NHCH2CF3 and (i-PrO)2P(O)NHCH2CF3 were isolated in 49 and 25% yield, respectively. Treatment of POCl3 with one molar equivalent each of H2NCH2CF3 and Et3N permitted the synthesis of Cl2P(O)NHCH2CF3 in 43% yield. Bis(fluoroalkyl) phosphorochloridates (RFO)2P(O)Cl, where RF = C2F5CH2, C3F7CH2 and (CF3)2CH, reacted with 2,2,2-trifluoroethylamine and 2,2,3,3,3-pentafluoropropylamine to furnish phosphoramidates (RFO)2P(O)NHCH2R, where R = CF3 or C2F5, in yields of 32-67%.  相似文献   

18.
The reaction of 1,1′-bis(pentafluorophenyl)ferrocene with fluorous alkoxides having the general formula NaOCH2(CF2)nCF3 (n = 0, 2, 5, 7, and 8) afforded a series of ferrocenes of general formula {η5-4-[CF3(CF2)nCH2O]C6F4C5H4}2Fe (1). The reaction of 1,1′-bis(4-tetrafluoropyridyl)ferrocene with the same fluorous alkoxides afforded a series of ferrocenes of general formula (η5-4-{2,6-[CF3(CF2)nCH2O]2C5F2N}C5H4)2Fe (2). Perfluoro(methylcyclohexane)/toluene partition coefficients increase with the number (2 or 4) and length (n) of the fluorous substituent. Complexes 1a and 2a (both n = 0) were structurally characterized.  相似文献   

19.
An efficient method for the preparation of carbosiloxane dendrimers with end-grafted SiH-bonds is given by using the alcohols HOCH(Me)(CH2)4SiMe3 − nHn (4a: n = 1, 4b: n = 2, 4c: n = 3), which themselves are accessible by the hydrosilylation of MeCOCH2CH2CHCH2 (1) with the chlorosilanes HSiMe3 − nCln (2a: n = 1, 2b: n = 2, 2c: n = 3) and hydrogenation of the latter species with Li[AlH4]. Alcohols 4a-4c can be used as starting materials for the preparation of carbosiloxane dendrimers of the 1st-3rd generation. For the synthesis of the 1st generation dendrimers, Me4 − mSiClm (5a: m = 1, 5b: m = 2, 5c: m = 3, 5d: m = 4) is reacted with 4a-4c in presence of NEt3 as base. The dendritic molecules Me4 − mSi[OCH(Me)(CH2)4SiMe3 − nHn]m (n = 1: 6a, m = 1; 6b, m = 2; 6c, m = 3; 6d, m = 4. n = 2: 7a, m = 1; 7b,m = 2; 7c, m = 3; 7d, m = 4. n = 3: 8a, m = 3; 8b, m = 4) are thereby obtained in excellent yield. Carbosiloxane dendrimers of the 2nd and 3rd generation with a MeSiO3- or SiO4-core can be isolated from the reaction of MeSi(OCH2CH2CH2SiMe2Cl)3 (9), MeSi(OCH2CH2CH2SiMeCl2)3 (11), Si(OCH2CH2CH2SiMe2Cl)4 (13) and MeSi(OCH2CH2CH2SiMe(OCH2CH2CH2SiMe2Cl)2)3 (15) with 4a or 4b, respectively, under similar reaction conditions. Thereby MeSi[OCH2CH2CH2SiMe2OCH(Me)(CH2)4SiMe2H]3 (10), MeSi[OCH2CH2CH2SiMe[OCH(Me)(CH2)4SiMe3 − nHn]2]3 (12a, n = 1; 12b, n = 2), Si[OCH2CH2CH2SiMe[OCH(Me)(CH2)4SiMe2H]2]4 (14) and MeSi[OCH2CH2CH2SiMe[OCH2CH2CH2SiMe2OCH(Me)(CH2)4SiMe3 − nHn]2]3 (16) are formed as colourless oils.Compounds 3, 4, 6-8, 10, 12, 14 and 16 were characterised by elemental analysis as well as spectroscopic (IR, NMR) and mass spectrometric (ESI-TOF) studies.  相似文献   

20.
Twenty nine bis(fluoroalkyl) phosphates (RFO)2P(O)OR were prepared in 18-75% yield by treating phosphorochloridates (RFO)2P(O)Cl, where RF was HCF2CH2, HCF2CF2CH2, H(CF2)4CH2, C2F5CH2, C3F7CH2, (CF3)2CH, (FCH2)2CH and (CH3)2CF3C with methanol, ethanol, propanol and isopropanol in diethyl ether in the presence of triethylamine. The bulky chloridate [(CH3)2CF3CO]2P(O)Cl reacted with methanol, ethanol and propanol, but not with isopropanol - even on heating in the presence of the catalyst 4-dimethylaminopyridine - due to steric hindrance at phosphorus. The relative reactivities of three of the chloridates decreased in the order [(CF3)2CHO]2P(O)Cl > [(FCH2)2CHO]2P(O)Cl > [(CH3)2CF3CO]2P(O)Cl. Also described is the synthesis of phosphates (CF3CH2O)2P(O)OCH2R, where R = CH2Br, CH2Cl, CH2F and CHF2, and diphosphates [H(CF2)nCH2O]2P(O)OCH2(CF2)2CH2OP(O)[OCH2(CF2)nH]2, where n = 1, 2 and 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号