首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New trans-disubstituted macrocyclic ligands, 1,8-[N,N-bis(3-formyl-12-hydroxy-5-methyl)benzyl]-5,12-dioxo-1,4,8,11-tetraazacyclotetradecane (L1), 1,8-[N,N-bis(3-formyl-12-hydroxy-5-bromo)benzyl]-5,12-dioxo-1,4,8,11-tetraazacyclotetradecane (L2), N,N-bis[1,8-dibenzoyl]-5,12-dioxo-1,4,8,11-tetraazacyclotetradecane (L3), N,N-bis[1,8-(2-nitrobenzoyl)]-5,12-dioxo-1,4,8,11-tetraazacyclotetradecane (L4), and N,N-bis[1,8-(4-nitrobenzoyl)]-5,12-dioxo-1,4,8,11-tetraazacyclotetradecane (L5) were synthesized. The ligands were characterized by elemental analysis, FT IR, 1H NMR and mass spectrometry studies. The crystal structure of L1 is also reported. The copper(II) and nickel(II) complexes of these ligands were prepared and characterized by elemental analysis, FT IR, UV-Vis and mass spectral studies. The cyclic voltammogram of the complexes of ligand L1-3 show one-electron quasi-reversible reduction wave in the region −0.65 to −1.13 V, whereas that of L4 and L5 show two quasi-reversible reduction peaks. Nickel(II) complexes show one electron quasi-reversible oxidation wave at a positive potential in the range +0.95 to +1.06 V. The ESR spectra of the mononuclear copper(II) complexes show four lines, characteristic of square-planar geometry with nuclear hyperfine spin 3/2. All copper(II) complexes show a normal room temperature magnetic moment value μeff 1.70-1.73 BM which is close to the spin only value of 1.73 BM. Kinetic studies on the oxidation of pyrocatechol to o-quinone using the copper(II) complexes as catalysts and hydrolysis of 4-nitrophenylphosphate using the copper(II) and nickel(II) complexes as catalysts were carried out. The ligands and their complexes were also screened for antimicrobial activity against Gram-positive, Gram-negative bacteria and human pathogenic fungi.  相似文献   

2.
Ion-selective membrane electrodes doped with the urea- or thiourea-functionalised calix[4]arenes, 5,11,17,23-tetra-tert-butyl-25,27-bis[[4-N′-(phenylureido)butyl]oxy]-26,28-dipropoxy calix[4]arene (I) and 5,11,17,23-tetra-tert-butyl-25,27-bis[[4-(N′-phenylthioureido)-butyl]oxy]-26,28-dipropoxy calix[4]arene (II), were evaluated for anion sensing. Potentiometric results show that these calixarene ionophore-based membrane electrodes exhibit a good sensitivity to aqueous solutions of the monohydrogen orthophosphate species HPO42− in the concentration range 5.0 × 10−5 to 1.0 × 10−1 M, with near-Nernstian response slopes of −33.0 and −28.0 mV dec−1 for ionophores I and II, respectively. Selectivity coefficient values for monohydrogen orthophosphate over a range of common anions were determined by the fixed interference and matched potential methods and indicated that these membrane electrodes exhibit a good selectivity for HPO42− with respect to the other anions, including sulfate and nitrate.  相似文献   

3.
The synthesis of some chiral bis-(aminol)ethers are described. Reaction of a solution of the resorcin[4]arene derived from propanal with N,N-bis(methoxymethyl)-N-(S)-(−)-α-methylbenzylamine in toluene at 85 °C initially afforded a 1:1 mixture of two diastereoisomeric tetrakis(benzoxazines). Further, heating of this mixture under reflux in ethanol for 24 h afforded the crystalline (αS),(S)-diastereoisomer in 77% yield. N,N-bis(ethoxymethyl)-N-(S)-(−)-α-methylbenzylamine and N,N-bis(ethoxymethyl)-N-(R)-(+)-α-methylbenzylamine were reacted with β keto esters to afford a 1:1 mixture of the diastereoisomeric double Mannich adducts. Two of the double Mannich adducts were converted into tricyclic ABE analogues of the alkaloid methyllycaconitine 1.  相似文献   

4.
Preparations, crystal structures, electronic and CD spectra are reported for new chiral Schiff base complexes, bis(N-R-1-naphthylethyl-3,5-dichlorosalicydenaminato)nickel(II), copper(II), and zinc(II). Nickel(II) and copper(II) complexes adopt a square planar trans-[MN2O2] coordination geometry with Δ(R,R) configuration. While zinc(II) complex adopts a compressed tetrahedral trans-[MN2O2] one with Δ(R,R) configuration and exhibits an emission band around 21 000 cm−1 (λex = 27 000 cm−1). Absorption and CD spectra were recorded in N,N′-dimethylformamide, acetone, methanol, chloroform, and toluene solutions to discuss relationships between spectral shifts of d–d and π–π bands by structural changes of the complexes and physical properties of the solvents. Moreover, we have attempted to investigate conformational changes of the complexes induced by photoisomerization of azobenzene, 4-hydroxyazobenzene, or 4-aminoazobenzene, in various solutions under different conditions. Weak intermolecular interactions between complexes and azobenzenes are important for the phenomenon by conformational changes of bulky π-conjugated moieties of the ligands.  相似文献   

5.
Ohno S  Teshima N  Sakai T  Grudpan K  Polasek M 《Talanta》2006,68(3):527-534
A sequential injection (SI) method in a lab-on-valve (LOV) format for simultaneous spectrophotometric determination of copper and iron has been devised. The detection chemistry is based on the complex formation of 2-(5-bromo-2-pyridylazo)-5-[N-n-propyl-N-(3-sulfopropyl)amino]aniline (5-Br-PSAA) with copper(II) and/or iron(II) at pH 4.6. Copper(II) reacts with 5-Br-PSAA to form the complex which has an absorption maximum at 580 nm but iron(III) does not react. In the presence of a reducing agent only iron(II)-5-Br-PSAA complex is formed and detected at 558 nm. Under the optimum experimental conditions, the determinable ranges are 0.1-2 mg l−1 for copper and 0.1-5 mg l−1 for iron, respectively, with a sampling rate of 18 h−1. The limits of detection are 50 μg l−1 for copper and 25 μg l−1 for iron. The relative standard deviations (n = 15) are 2% for 0.5 mg l−1 copper and 1.8% for 0.5 mg l−1 iron when determined in standard solutions. The recoveries range between 96 and 105% when determining 0.25-2 mg l−1 of copper and 0.2-5 mg l−1 of iron in artificial mixtures at copper/iron ratios of 1:10 to 5:1. The proposed SI-LOV method is successfully applied to the simultaneous determination of copper and iron in multi-element standard solution and in industrial wastewater samples.  相似文献   

6.
A series of macrobicyclic unsymmetrical binuclear copper(II) complexes of compartmental ligands were synthesized from the Schiff base condensation of 1,8[N,N′-bis{(3-formyl-2-hydroxy-5-methyl)benzyl}]-1,4,8,11- tetraaza-5,5,7,12,12,14-hexa methylcyclotetradecane with diamines like 1,2-diamino ethane, 1,3-diamino propane, 1,4-diaminobutane, 1,2-diaminobenzene and 1,8-diaminonaphthalene. The complexes were characterized by elemental and spectral analysis. Electrochemical studies of the copper(II) complexes show two irreversible one-electron reduction processes around E1pc = −0.70 to −1.10 V and E2pc = −0.98 to −1.36 V. ESR spectra of the binuclear copper(II) complexes show a broad signal at g = 2.10 and μeff values in the range 1.46–1.59 BM, which convey the presence of antiferromagnetic coupling. Cryomagnetic investigation of the binuclear complexes [Cu2L3(ClO4)](ClO4) and [Cu2L4(ClO4)](ClO4) show that the observed −2J values are 144 and 216 cm−1, respectively. The observed initial rate (Vin) for the catalytic hydrolysis of p-nitrophenyl phosphate by the binuclear copper(II) complexes were in the range 1.8 × 10−5 to 2.1 × 10−5 Ms−1. The initial rate (Vin) for the catalytic oxidation of catechol to o-quinone by the binuclear copper(II) complexes were in the range 2.7 × 10−5 to 3.5 × 10−5 Ms−1. The copper(II) complexes have been found to promote cleavage of plasmid pBR 322 DNA from the supercoiled form I to the open circular form II.  相似文献   

7.
The thermodynamic equilibria of copper(II), zinc(II) and calcium(II) with N,N′-bis[2(2-pyridyl)-methyl]pyridine-2,6-dicarboxamide (L1) have been studied at 25 °C and an ionic strength of 0.15 mol dm−3. Spectroscopic studies suggest metal ion complexation promotes deprotonation and coordination of the amide nitrogens resulting in overall tetragonal coordination of Cu2+. Blood–plasma modelling predicts that Cu(II) competes effectively against Zn(II) and Ca(II) for L1 in vivo. Octanol–water partition coefficient studies show that Cu(II)–L1 complexes are reasonably lipophilic. However, the CuL1H−2 species which predominates at the physiological pH of 7.4 has poor superoxide dismutase activity. Bio-distribution experiments showed activity accumulation and retention in the body of about 50% of the injected dose for the [64Cu]Cu(II)–L1 complex after 24 h.  相似文献   

8.
A compound with a linear trinuclear copper(II) cation, [Cu3(μ-protan)2](ClO4)2·H2O (protanH2 = 3,7-bis(3-hydroxypropyl)-1,3,5,7-tetraazabicyclo[3,3,1]-nonane) is formed by reaction of copper(II) perchlorate, 3-aminopropanol, ammonia and methanal. The cation is approximately centrosymmetrical with Cu?Cu = 2.9870(5) and 2.9485(5) Å. The terminal copper(II) ions are coordinated by nitrogen atoms 3 and 7 of the tetraazabicycle (Cu–Nmean = 2.021(5) Å) and the two oxygen atoms of the 3,7-bis(3-olatopropyl) substituents (Cu–Omean = 1.911(3) Å), which also act as bridging groups to the central copper(II) ion (Cu–Omean = 1.926(4) Å). The cation is both helically twisted (dihedral angle N3?N7?N3′?N7′ = 20(1)°) and bent (angle Cu?Cu?Cu = 171(1)°). The copper(II) ions have tetrahedrally twisted square planar primary coordination, with perchlorate ion oxygen atoms weakly coordinated axially to the two terminal copper(II) ions, on opposite sides of the “plane” of the molecule, while the central copper(II) ion is weakly coordinated axially by a water molecule, with all axial Cu–O distances ca. 2.9 Å. One N·CH2·CH2·CH2·O chelate ring for each protan2− ligand shows conformational disorder and the perchlorate ions show rotational disorder. Partial hydrolysis of the protan2− compound gave a compound [{Cu(μ-protan)}Cu(OH)2](ClO4)2·0.5(EtOH) which has a dinuclear cation, with one copper(II) ion in square-planar coordination by tetradentate protan2− and the other in square-planar coordination by the two bridging oxygen atoms of the protan2− ligand and by two hydroxide ions, with Cu?Cu = 3.045(1) Å. With differing mole ratios of the same reactants compounds of the dinuclear cation [{Cu(μ-pta)}2]2+ (ptaH = 3(3-hydroxypropyl)-1,3,5,7-tetraazabicyclo[3,3,1]nonane) are formed.  相似文献   

9.
For the first time, the formation of a luminescent hexanuclear cluster has been used for the selective determination of copper. In aqueous solutions, the non-luminescent ligand N-ethyl-N′-methylsulfonylthiourea (EMT) forms an intensely red luminescent hexanuclear Cu(I)-cluster with an emission maximum at 663 nm only with Cu(II) ions. The intensity of the luminescence is proportional to the Cu(II) concentration and allows for selective Cu determinations in the μg l−1-range. Ubiquitous metal ions such as Fe(III), Al(III), Ca(II), Mg(II), and alkaline metal ions, as well as other heavy metal ions, e.g. Co(II), Ni(II), Zn(II), Cd(II), Hg(II), and Pb(II) are tolerated in concentrations up to 50 mg l−1. The detection limit for Cu(II) in aqueous solution, calculated according to Funk et al. [Qualitätssicherung in der Analytischen Chemie, Verlag Chemie, Weinheim, 1992], is 113 μg l−1. The cluster formation has been used for the quantitative analysis of copper in tap water and in industrial water, as well as for the localization of copper adsorbed by activated-sludge flocs.  相似文献   

10.
The dibenzodioxatetraazamacrocycle [26]pbz2N4O2 was characterised by single crystal X-ray diffraction and the protonation constants of this compound and the stability constants of its copper(II) and lead(II) complexes were determined by potentiometry in water at 298.2 K in 0.10 mol dm−3 in KNO3. Mono- and dinuclear complexes were found for both metal ions, the dinuclear complexes being the main species in the 5–7.5 pH range for copper(II) and 7.5–8.5 for lead(II). As expected the values of the stability constants for the copper(II) complexes are lower than those for related macrocycles containing only nitrogen atoms. The presence of mono- and dinuclear copper complexes was also confirmed by electrospray ionization mass spectrometry. These results suggest that the symmetric macrocyclic cavity of [26]pbz2N4O2 has enough space for the coordination of two metal ions. Additionally, NMR spectroscopy showed that the dinuclear complex of lead(II) has high symmetry. The equilibrium constants of the dinuclear copper(II) complexes and dicarboxylate anions (oxalate, malonate and succinate) were also determined in 0.10 mol dm−3 aqueous KNO3 solution. Only species containing one anion, Cu2HhLA(2+h), were found, strongly suggesting that the anion bridges the two copper(II) ions. The binding constants of the cascade species formed by [Cu2[26]pbz2N4O2(H2O)x]4+ with dicarboxylate anions decrease with the increase in length of the alkyl chain of the anion, a fact which was attributed to a higher conformational energy necessary for the rearrangement of the macrocycle to accommodate the larger anions bridging the two copper(II) centres. The variation of the magnetic susceptibility with temperature of [Cu2(H2[26]pbz2N4O2)(oxa)3] · 4H2O and [Cu2([26]pbz2N4O2)(suc)Cl2] were measured and the two complexes showed different behaviour.  相似文献   

11.
A polyvinyl chloride (PVC) based membrane sensor for cerium ions was prepared by employing N,N′-bis[2-(salicylideneamino)ethyl]ethane-1,2-diamine as an ionophore, oleic acid (OA) as anion excluder and o-nitrophenyloctyl ether (o-NPOE) as plasticizer. The plasticized membrane sensor exhibits a Nernstian response for Ce(III) ions over a wide concentration range (1.41 × 10−7 to 1.0 × 10−2 M) with a limit of detection as low as 8.91 × 10−8 M. It has a fast response time (<10 s) and can be used for 4 months. The sensor revealed a very good selectivity with respect to common alkali, alkaline earth and heavy metal ions. The response of the proposed sensor is independent of pH between 3.0 and 8.0. It was used as an indicator electrode in potentiometric titration of fluoride, carbonate and oxalate anions and determination of cerium in simulated mixtures.  相似文献   

12.
Matsumiya H  Iki N  Miyano S 《Talanta》2004,62(2):337-342
Sulfonylcalix[4]arenetetrasulfonate (SO2CAS) has been examined as a pre-column chelating reagent for ultratrace determination of metal ions by ion-pair reversed-phase high-performance liquid chromatography with spectrophotometric detection. Metal ions were converted into the SO2CAS chelates in an acetic buffer solution (pH 4.7). The chelates were injected onto a n-octadecylsilanized silica-type Chromolith™ Performance RP-18e column and were eluted using a methanol (50 wt.%)-water eluent (pH 5.6) containing tetra-n-butylammonium bromide (7.0 mmol kg−1), acetate buffer (5.0 mmol kg−1), and disodium ethylendiamine-N,N,N′,N′-tetraacetate (0.10 mmol kg−1). Under the conditions used, Al(III), Fe(III), and Ti(IV) were selectively detected among 21 kinds of metal ions [Al(III), Ba(II), Be(II), Ca(II), Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Ga(III), Hf(IV), In(III), Mg(II), Mn(II), Mo(VI), Ni(II), Pb(II), Ti(IV), V(V), Zn(II), and Zr(IV)]. The detection limits on a 3σ blank basis were 8.8 nmol dm−3 (0.24 ng cm−3) for Al(III), 7.6 nmol dm−3 (0.42 ng cm−3) for Fe(III), and 17 nmol dm−3 (0.80 ng cm−3) for Ti(IV). The practical applicability of the proposed method was checked using river and tap water samples.  相似文献   

13.
A new PVC membrane electrode for manganese(II) ion based on a recently synthesized Schiff base of 5-[(4-nitrophenylazo)-N-hexylamine]salicylaldimine is reported. The electrode exhibits a Nernstian response for Mn2+ ions over a wide concentration range (4.0 × 10−7 to 1.8 × 10−2 mol L−1) with a slope of 30.1 (±1.0). The limit of detection is 1.0 × 10−7 mol L−1. The electrode has a fast response time (∼10 s), a satisfactory reproducibility and relatively long life time. The proposed sensor revealed good selectivities over a wide variety of other cations include hard and soft metals. This electrode could be used in a pH range of 4.5-7.5. It was used as an indicator electrode in potentiometric titration of manganese(II) ions with EDTA solution.  相似文献   

14.
A sequential injection analysis (SIA) using lab-on-valve with air segmentation and spectrophotometric detection was designed for copper(II) determination. It is based on the reaction of copper(II) and 2-carboxy-2′-hydroxy-5′-sulfoformazyl benzene (Zincon) in a weak alkaline solution between the air zones. Beer's Law was obeyed over the range of 0.1-2.0 mg L−1 copper(II) with a correlation coefficient 0.9985 and a slope of 0.2893 absorbance unit/mg L−1. The relative standard deviation was 2.0% for a series of 10 measurements of 0.5 mg L−1 copper(II) solution. The detection limit (3 S/N) and the limit of quantification (LOQ) were 0.05 and 0.17 mg L−1 respectively. This method has been successfully applied to determination of copper(II) in wastewater with a sample throughput of 120 h−1. The method is superior to the batchwise method in that it provides fully automation, rapidity, less reagents and sample consumption with little waste generation.  相似文献   

15.
Four azide bridged dinuclear copper(II) complexes, [Cu2(LX)2(N3)2](ClO4)2, with LX = substituted N,N-bis[(3,5-dimethylpyrazole-1-yl)-methyl]benzylamine, [X = H (1), OMe (2), Me (3) and Cl (4)] have been synthesized, out of which complexes 1 and 2 have been characterized structurally. In Complex 1 the two bridging azide ligands have connected the two metal centers in an end-on (EO) fashion with aSP (asymmetric Square Pyramidal) geometry and showed an weak antiferromagnetic interaction (J = −3.34 cm−1). On the contrary, in complex 2, the two metal centers have been connected in end-to-end (EE) fashion exhibiting moderately strong ferromagnetic interaction (J = +19.7 cm−1). Cyclic voltammetric studies performed on all the four complexes show a reasonably good correlations when E1/2 for CuIICuII → CuIICuIII and CuIICuIII → CuIIICuIII oxidations are plotted against σ (substituent constants) with ρ = −0.182 (R= 0.92) and −0.684 (R= 0.99) respectively.  相似文献   

16.
A new cobalt Schiff-base complex, [Co(L)(OH)(H2O)] (where L = [N,N′-bis(2-aminothiophenol)-1,4-bis(carboxylidene phenoxy)butane), was synthesized and its electrochemical and spectroelectochemical properties were investigated using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and thin-layer spectro-electrochemistry in solutions of dimethyl sulfoxide (DMSO) and dichloromethane (CH2Cl2). The [Co(L)(OH)(H2O)] complex displays two well-defined reversible reduction processes with the corresponding anodic waves. The half-wave potentials of the first and second reduction processes were displayed at E1/2 = 0.08 V and E1/2 = −1.21 V (scan rate: 0.100 Vs−1) in DMSO, and E1/2 = −0.124 V and E1/2 = −1.32 V (scan rate: 0.100 Vs−1) in CH2Cl2. The potentials of the reduction processes in DMSO are shifted toward negative potentials (0.220–0.112 V) compared to those in CH2Cl2. The electrochemical results are assigned to two one-electron reduction processes; [Co(III)L] + e → [Co(II)L] and [Co(II)L] + e → [Co(I)L]2−. The six-coordination of the complex remains unchanged during the reduction processes and the electron transfer processes were not followed by a chemical reaction upon scan reversal. It was also seen that [Co(L)(OH)(H2O)] was reduced at a more positive potential than the corresponding salen analogs. The shift and reversibility are apparently related to the high degree of electron delocalization of the [Co(L)(OH)(H2O)] complex, having a N2O2S2 donor set and two additional benzene units. Additionally, in situ spectroelectrochemical measurements support Co(III)/Co(II) and Co(II)/Co(I) reversible reduction processes with the observation of the corresponding spectral changes with the applied potentials Eapp = −0.40 and −1.60 V. Application of the spectroelectrochemical results allowed the determination ofE1/2 and n (the number of electrons) from the spectra of the fully oxidized and reduced species in one unified experiment as well. The results obtained by this method are in agreement with those by the CV and DPV methods.  相似文献   

17.
The N4O3 coordinating heptadentate imidazolidinyl phenolate ligand, H3L (2-(2′-hydroxyphenyl)-1,3-bis[4-(2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine) forms with Cu(II) a rare aqua bridged complex [{Cu2(μ-L)(μ-H2O)}2](ClO4)2 · 4.5H2O (1 · 4.5H2O). Complex 1 · 4.5H2O contains two crystallographically different but chemically equivalent dinuclear [Cu2(μ-L)(μ-H2O)]+ cationic units in the asymmetric unit. The copper atoms of each dinuclear unit are in a distorted square-pyramidal environment and are held together by phenolate, imidazolidinyl and aqua bridges with a Cu···Cu separation of av. 3.34 Å. The compound exhibits a very weak antiferromagnetic exchange interaction (J = −0.77 cm−1, ? = J?1?2) between the two copper(II) (S = 1/2) ions. The 1H NMR spectrum of the complex shows a total of 17 hyperfine shifted peaks, as expected from the idealized Cs symmetry of the compound, spread over a very large window of chemical shift, spanning about 250 ppm. The complex, having an appropriate intermetallic separation for catechol binding, shows catecholase like activity in MeCN at 25 °C, with the aerobic oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) to 3,5-di-tert-butylquinone (3,5-DTBQ).  相似文献   

18.
Five copper(II) complexes with N(4)-ortho, N(4)-meta and N(4)-para-tolyl thiosemicarbazones derived from 2-formyl and 2-acetylpyridine were obtained and thoroughly characterized. The crystal structure of N(4)-meta-tolyl-2-acetylpyridine thiosemicarbazone (H2Ac4mT) was determined, as well as that of its copper(II) complex [Cu(2Ac4mT)Cl], which contains an anionic ligand and a chloride in the coordination sphere of the metal. The in vitro antimicrobial activities of all thiosemicarbazones and their copper(II) complexes were tested against Salmonella typhimurium and Candida albicans. Upon coordination a substantial decrease in the minimum inhibitory concentration, from 225 to 1478 μmol L−1 for the thiosemicarbazones to 5–30 μmol L−1 for the complexes was observe against the growth of Salmonella typhimurium and from 0.7–26 to 0.3–7 μmol L−1 against the growth of C. albicans, suggesting that complexation to copper(II) could be an interesting strategy of dose reduction.  相似文献   

19.
Eight new heterodinuclear Cu(II)–M(II) (M = Pb and Zn) complexes of four new phenol based compartmental macrocyclic ligands, possessing contiguous (N2O2) and (NxO2) (x = 2, 3) coordination sites, were prepared by the template reaction of [N,N′-bis(3-formyl-5-methylsalicylidene)ethane-1,2-diaminato]copper(II), with various di- and/or tri-amines in the presence of Pb(II) and Zn(II) ions. The crystal structure of [CuZnL3(H2O)](ClO4)2, 6, was determined by X-ray diffraction and shows that the Zn(II) and Cu(II) ions reside in the N2O2 sites of the macrocyclic ligand. The fifth coordination site of the Zn centre is occupied by a water ligand. All the complexes have been characterized by elemental analysis, molar conductivity and spectroscopic methods (IR and UV). Also, all the synthesized complexes were screened for their antibacterial and antifungal activity against Escherichia coli, Staphyloccocus aureus and Candida albicans.  相似文献   

20.
A novel biomimetic sensor for rutin determination based on a dinuclear complex [MnIIIMnII(Ldtb)(μ-OAc)2]BPh4 containing an unsymmetrical dinucleating ligand, 2-[N,N-bis(2-pyridylmethyl)-aminomethyl]-6-[N-(3,5-di-tert-butyl-2-oxidoben-zyl)-N-(2-pyridylamino)aminomethyl]-4-methylphenol (H2Ldtb), as a manganese peroxidase mimetic was developed. Several parameters were investigated to evaluate the performance of the biomimetic sensor obtained after the incorporation of the dinuclear complex in a carbon paste. The best performance was obtained in 75:15:10% (w/w/w) of the graphite powder:Nujol:MnIIIMnII complex, 0.1 mol L−1 phosphate buffer solution (pH 6.0) and 4.0 × 10−5 mol L−1 hydrogen peroxide. The response of the sensor towards rutin concentration was linear using square wave voltammetry in the range of 9.99 × 10−7 to 6.54 × 10−5 mol L−1 (r = 0.9998) with a detection limit of 1.75 × 10−7 mol L−1. The recovery study performed with pharmaceuticals ranged from 96.6% to 103.2% and the relative standard deviation was 1.85% for a solution containing 1.0 × 10−3 mol L−1 rutin (n = 6). The lifetime of this biomimetic sensor was 200 days (at least 750 determinations). The results obtained for rutin in pharmaceuticals using the biomimetic sensor and those obtained with the official method are in agreement at the 95% confidence level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号