首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two-ordered perovskites, Bi1/3Sr2/3FeO2.67 and Bi1/2Ca1/2FeO2.75, have been stabilized and characterized by transmission electron microscopy, Mössbauer spectroscopy and X-ray powder diffraction techniques. They both exhibit orthorhombic superstructures, one with ab≈2ap and c≈3ap (S.G.: Pb2n or Pbmn) for the Sr-based compound and one with ab≈2ap and c≈8ap (S.G.: B222, Bmm2, B2mm or Bmmm) for the Ca-based one. The high-resolution transmission electron microscopy (HRTEM) images evidence the existence of one deficient [FeOx] layer, suggesting that Bi1/3Sr2/3FeO2.67 and Bi1/2Ca1/2FeO2.75 behave differently compared to their Ln-based homolog. The HAADF-STEM images allow to propose a model of cation ordering on the A sites of the perovskite. The Mössbauer analyses confirm the trivalent state of iron and its complex environment with three types of coordination. Both compounds exhibit a high value of resistivity and the inverse molar susceptibility versus temperature curves evidence a magnetic transition at about 730 K for the Bi1/3Sr2/3FeO2.67 and a smooth reversible transition between 590 and 650 K for Bi1/2Ca1/2FeO2.75.  相似文献   

2.
Single-phase 1:2 B-site ordered perovskites are formed in the (1−x)A2+(Li1/4Nb3/4)O3-(x)A2+(Li2/5W3/5)O3 systems, A2+=Sr and Ca, within the range 0.238?x?0.333. The X-ray and electron diffraction patterns are consistent with a P21/c monoclinic supercell, , , , β≈125°, where the 1:2 order is combined with bbc+ octahedral tilting. Rietveld refinements of the ordered A(BI1/3BII2/3)O3 structures give a good fit to a model with BI occupied by Li and Nb, BII by W and Nb, and a general stoichiometry (Sr,Ca)(Li3/4+y/2Nb1/4−y/2)1/3(Nb1−yWy)2/3O3, y=0.9x=0.21-0.30. The Sr system also includes regions of stability of a 1:3 ordered phase for 0.0?x?0.111, and a 1:1 ordered double perovskite for 0.833?x?1.0. The formation of the non-stoichiometric 1:2 ordered phases is associated with the large site charge/size differences that can be accessed in these systems, and restricted by local charge imbalances at the A-sites for W-rich compositions. These concepts are used to generate stability maps to rationalize the formation of the known 1:2 ordered oxide perovskites.  相似文献   

3.
The crystal structures of the perovskite manganites SrxCa1−xyNdyMnO3 with y=0.1 or 0.2 have been investigated using synchrotron X-ray powder diffraction. At room temperature the structures change from depending on the cation distribution, the different structures exhibiting different tilts of the MnO6 octahedra. High temperature diffraction measurements demonstrate the presence of, an apparently continuous, isosymmetric I4/mcm to I4/mcm phase transition associated with the removal of long range orbital ordering. Heating the manganites to still higher temperatures results in a continuous transition to the cubic structure. A feature of such transitions is the continuous evolution of the octahedral tilt angle through the I4/mcm to I4/mcm phase transition. The orthorhombic structures do not exhibit orbital ordering and although a first order transition to the tetragonal structure is observed in Sr0.4Ca0.5Nd0.1MnO3, this high temperature tetragonal structure does not exhibit orbital ordering.  相似文献   

4.
Single crystals of KxMg(8+x)/3Sb(16−x)/3O16 (x≈1.76) with a hollandite superstructure were grown. Ordering schemes for guest ions (K) and the host structure were confirmed by the structure refinement using X-ray diffraction intensities. The space group is I4/m and cell parameters are a=10.3256(6), c=9.2526(17)Å with Z=3. Superlattice formation is primarily attributed to the Mg/Sb occupational modulation in the host structure. Mg/Sb ratios at two nonequivalent metal sites are 0.8977/0.1023 and 0.1612/0.8388. Two types of the cavity are seen in the tunnel, where parts of K ions deviate from the cavity center along the tunnel direction. Probability densities for K ions in the two cavities are different from each other, which seems to have arisen from the Mg/Sb modulation.  相似文献   

5.
The aqueous synthesis and electrochemical properties of nanocrystalline MxV2O5Ay·nH2O are described. It is easily and quickly prepared by precipitation from acidified vanadate solutions. MxV2O5Ay·nH2O has been characterized by X-ray powder diffraction, electron microscopy, TGA, chemical analyses, and electrochemical studies. The atomic structure is related to that of xerogel-derived V2O5·nH2O. In MxV2O5Ay·nH2O, M is a cation from the starting vanadate salt and A is an anion from the mineral acid. This material exhibits high, reversible Li capacity and may be considered for use in a cathode in primary and secondary batteries. The lithium capacity of an electrode composed of MxV2O5Ay·nH2O/EPDM/carbon (88/4/8) is ∼380(mA h)/g (C/80 rate) and the energy density is ∼1000(W h)/kg (120-μm-thick cathode, 4-1.5 V, versus Li metal anode). Critical parameters identified in the synthesis of MxV2O5Ay·nH2O, with respect to achieving high Li-ion insertion capacity, are acid/vanadium ratio, starting vanadate salt, and temperature. Inclusion of carbon black in the synthesis yields a composite that maintains the high Li capacity, lowers the electrochemical-cell polarization, and preserves the lithium capacity at higher discharge rates. Li-ion coin cells, using pre-lithiated graphite anodes, exhibit electrochemical performance comparable to that of Li-metal coin cells.  相似文献   

6.
7.
Nitrogen substituted yellow colored anatase TiO2−xNx and Fe-N co-doped Ti1−yFeyO2−xNx have been easily synthesized by novel hydrazine method. White anatase TiO2−δ and N/Fe-N-doped samples are semiconducting and the presence of ESR signals at g ∼1.994-2.0025 supports the oxygen vacancy and g∼4.3 indicates Fe3+ in the lattice. TiO2−xNx has higher conductivity than TiO2−x and Fe/Fe-N-doped anatase and the UV absorption edge of white TiO2−x extends in the visible region in N, Fe and Fe-N co-doped TiO2, which show, respectively, two band gaps at ∼3.25/2.63, ∼3.31/2.44 and 2.8/2.44 eV. An activation energy of ∼1.8 eV is observed in Arrhenius log resistivity vs. 1/T plots for all samples. All TiO2 and Fe-doped TiO2 show low 2-propanol photodegradation activity but have significant NO photodestruction capability, both in UV and visible regions, while standard Degussa P-25 is incapable in destroying NO in the visible region The mid-gap levels that these N and Fe-N-doped TiO2 consist may cause this discrepancy in their photocatalytic activities.  相似文献   

8.
The crystal structure of a complex molybdenum oxide Ag1/8Pr5/8MoO4 is reported. The Ag1/8Pr5/8MoO4 sub-structure can be described on the base of the scheelite (CaWO4) structure. Transmission electron microscopy reveals that the real structure is better described in a (3+1)D formalism. According to electron diffraction study the new scheelite-type complex oxide Ag1/8Pr5/8MoO4 crystallizes in the B2/b(αβ0)00 (3+1)D superspace group with unit cell parameters , , and γ≈135° (Z=4) and modulation vector q=0.56a*+0.59b*. The structure of Ag1/8Pr5/8MoO4 is refined from X-ray powder data in the scheelite setting I2/b(αβ0) with , , q=1.14690(14)a*+0.58921(12)b* with fixed γ=90° angle (Rp=0.033, R=0.033, Rm=0.029, R1=0.047, S=1.36). Displacement modulations apply for all atoms. The occupancy modulation shows that one-fourth of the Ag/Pr atoms are absent. The structure can be considered as a crystallographic shear structure with incommensurate ordering of vacancies and displacement modulations for all atoms. The arrangement of Ag/Pr atoms and vacancies is at the origin of the incommensurate modulation in the cation-deficient Ag1/8Pr5/8MoO4 phase.  相似文献   

9.
The structure of pseudorhombohedral-type InFe1−xTixO3−x/2 (x=2/3) was refined by Rietveld profile fitting. The crystal is a commensurate member of a series in a solution range on InFeO3-In2Ti2O7 including incommensurate structures. The structure with the unit cell of a=5.9188(1), b=10.1112(2), and c=6.3896(1) Å, β=108.018(2)°, and a space group P21/a is the alternate stacking of an edge-shared InO6 octahedral layer and an Fe/Ti-O plane along c*. Metal sites on the Fe/Ti-O plane are surrounded by four oxygen atoms on the Fe/Ti-O plane and two axial ones. Electric conductivities of the order 10−4 S/cm were observed for the samples at 1000 K, while the oxide ion transport number is almost zero as no electromotive force was detected by an oxygen concentration cell.  相似文献   

10.
Although both end members in the (1−x)Ba(Li1/4Nb3/4)O3-xBa(Li2/5W3/5)O3 (BLNW) system adopt a hexagonal perovskite structure, B-site ordered cubic perovskites are formed for the majority of their solid solutions (0.238?x?0.833). Within this range, single-phase 1:2 order (, , ) is stabilized for 0.238?x?0.385. In contrast to all known A(B1/3IB2/3II)O3 perovskites, the 1:2 ordered BLNW solid solutions do not include any composition with a 1:2 cation distribution and the structure exhibits extensive non-stoichiometry. Structure refinements support a model where Li and W occupy different positions and Nb is distributed on both sites, i.e. Ba[(Li3/4+y/2Nb1/4−y/2)1/3(Nb1−yWy)2/3]O3 (y=0.21-0.35, where y=0.9x). The stabilization of the non-stoichiometric order arises from the large charge/size site differences; the loss of 1:2 order for W-rich compositions is related to local charge imbalances on the A-site sub-lattice. The range of single-phase 1:1 order is confined to x=0.833, (Ba(Li3/4Nb1/4)1/2(W)1/2)O3), where the site charge/size difference is maximized and the on-site mismatches are minimized. The microwave dielectric loss properties of the ordered BLNW solid solutions are significantly inferior as compared to their stoichiometric counterparts.  相似文献   

11.
The two families of intermetallic phases REAuAl4Ge2 (1) (RE=Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Tm and Yb) and REAuAl4(AuxGe1−x)2 (2) (x=0.4) (RE=Ce and Eu) were obtained by the reactive combination of RE, Au and Ge in liquid aluminum. The structure of (1) adopts the space group R-3m (CeAuAl4Ge2, , ; NdAuAl4Ge2, , ; GdAuAl4Ge2, , ; ErAuAl4Ge2, , ). The structure of (2) adopts the tetragonal space group P4/mmm with lattice parameters: , for EuAuAl4(AuxGe1−x)2 (x=0.4). Both structure types present slabs of “AuAl4Ge2” or “AuAl4(AuxGe1−x)2” stacking along the c-axis with layers of RE atoms in between. Magnetic susceptibility measurements indicate that the RE atoms (except for Ce and Eu) possess magnetic moments consistent with +3 species. The Ce atoms in CeAuAl4Ge2 and CeAuAl4(AuxGe1−x)2 (x=0.4) appear to be in a mixed +3/+4 valence state; DyAuAl4Ge2 undergoes an antiferromagnetic transition at 11 K and below this temperature exhibits metamagnetic behavior. The Eu atoms in EuAuAl4(AuxGe1−x)2 (x=0.4) appear to be in a 2+ oxidation state.  相似文献   

12.
The layered LiNi1/3Co1/3Mn1/3O2−zFz (0 ≤ z ≤ 0.12) cathode materials were synthesized from oxalate precursors by a simple self-propagating solid-state metathesis method with the help of the ball milling and the following calcination. Li(Ac)·2H2O, Ni(Ac)2·4H2O, Co(Ac)2·4H2O, Mn(Ac)2·4H2O(Ac = acetate), LiF and excess H2C2O4·2H2O were used as starting materials without any solvent. The structural and electrochemical properties of the prepared LiNi1/3Co1/3Mn1/3O2−zFz were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and electrochemical measurements, respectively. The XRD patterns indicate that all samples have a typical hexagonal structure with a space group of . The FESEM images show that the primary particle size of LiNi1/3Co1/3Mn1/3O2−zFz gradually increases with increasing fluorine content. Though the fluorine-substituted LiNi1/3Co1/3Mn1/3O2−zFz have lower initial discharge capacities, a small amount of fluorine-substituted LiNi1/3Co1/3Mn1/3O2−zFz (z = 0.04 and 0.08) exhibit excellent cycling stability and rate capability compared to fluorine-free LiNi1/3Co1/3Mn1/3O2.  相似文献   

13.
The (Ca1-2xNaxLax)TiO3 (0?x?0.5) A-site substituted perovskite compounds have been synthesized and characterized by XRD and Raman spectroscopy at room temperature. The XRD powder diffraction study suggests that the end-member Na1/2La1/2TiO3 crystallizes in the tetragonal space group I4/mcm. The phase transition from Pbnm to I4/mcm is located between x=0.34 and 0.39 and is driven by the variation of ionic radii at the A-site. The observed Raman modes are in agreement with group theory analysis, and the relationships between the behavior of structural parameters (e.g. Ti-O-Ti bond angle), indicated by long-range order, and the corresponding Raman frequency shifts and intensity evolution, indicated by short-range order, are established and discussed in terms of the radius effect and the mass effect.  相似文献   

14.
Bi2O3-MoO3 system shows a large panoply of phases depending on Bi/Mo ratio, among them, the low temperature phases of the homologous series Bi2(n+2)MonO6(n+1) with n=3, 4, 5 and 6. They exhibit, alike most of the phases of this system, strong fluorite sub-network. Nevertheless, a multitechnique approach has been followed in order to solve the crystal structure of the n=3 member, i.e. Bi10Mo3O24. From ab initio indexing X-ray powder pattern cell parameters were derived. It belongs to the monoclinic system, space group C2, with cell parameters: a=23.7282(2) Å, b=5.64906(6) Å, c=8.68173(9) Å, β=95.8668(7)° with Z=2. The matrix relating this cell with the fluorite one is 4 0 1/0 1 0/ 0  and a cationic localization was derived. HRTEM allowed the cationic Bi and Mo order to be modified and specified, as well as to build up a full structural ab initio model on the basis of crystal chemistry considerations. Simultaneous Rietveld refinement of multipattern X-ray and neutron powder diffraction data taking advantage of the neutron scattering length for O location have been performed. The goodness of the model was ascertained by low reliability factors, weighted Rb=4.97% and Rf=3.21%. This complex Bi10Mo3O24 structure, with 5Bi, 2Mo and 13O in different crystallographic positions of the asymmetric unit, shows good agreement between observed and calculated patterns within the data resolution. Moreover, the determination of this structure sets the basis for the crystallographic characterization of the complete family Bi2(n+2)MonO6(n+1), whose guidelines are also evidenced in this paper.  相似文献   

15.
The two hitherto unknown compounds Bi14P4O31 and Bi50V4O85 were prepared by the direct solid-state reaction of Bi2O3 and (NH4)H2PO4 or V2O5, respectively. Bi14P4O31 crystallizes in a C-centred monoclinic symmetry (C2/c space group) with the unit-cell parameters: , , and β=93.63(1)° (Z=16). The symmetry of Bi50V4O85 is also monoclinic (I2/m space group) with lattice parameters of , , and β=90.14(1)° (Z=2). Both structures correspond to a fluorite-type superstructure where the Bi and P or V atoms are ordered in the framework. An idealized structural model is proposed where the structures result of the stacking of mixed atomic layers of composition [Bi14M4O31] and [Bi18O27] respectively. This new family can be formulated Bi18−4mM4mO27+4m with M=P, V and where the parameter m (0?m?1) represents the ratio of the number of [Bi14M4O31] layers to the total number of layers in the sequence. Bi14P4O31 corresponds to m=1 when Bi50V8O85 corresponds to m=1/3. In this last case, the structural sequence is simply one [Bi14V4O31] layer to two [Bi18O27] layers. As predicted by the proposed structural building principle, Bi14P4O31 is not a good ionic conductor. The conductivity at 650 °C is 4 orders of magnitude lower from those found in Bi46M8O89 (M=P, V) (m=2/3) and Bi50V4O85 (m=1/3).  相似文献   

16.
Compounds A2/3A1/3M2XO8 (A=Tl, Rb, Cs; A′=Na, Ag; M=Nb, Ta; X=P, As) have been synthesized using the ceramic method. The sodium and potassium compounds (A= Na and K) have been prepared by an ion exchange reaction starting from their thallium analogues. These materials are isotypic with Tl1−xNaxNb2PO8 (x=0.21) the structure of which has been determined by using X-ray single-crystal data. The space group is R32, the cell constants are aH=13.369(2), cH=10.324(3) Å and z=9. This compound is isostructural with Ca0.5+xCs2 Nb6P3O24. Its three-dimensional framework [Nb2PO8]n, built up from NbO6 octahedra and corner-sharing PO4 tetrahedra, delimits tunnels running along cH and cavities accommodating Tl+ and Na+ cations, respectively. The K2/3Na1/3Nb2PO8 structure, refined using X-ray powder data, showed that K+ cations are spread like the Tl+ ones over many sites, but more excentred from the tunnel axis. The isotypy of these compounds is also revealed by the similarity of the infrared and Raman spectra. The nonlinear optical study showed a behavior similar to that of the KDP for all the compounds. The ionic conductivity measurements gave high activation energies and low conductivity values for these materials.  相似文献   

17.
Structural, dielectric and piezoelectric properties of (1−x)(Na1/2Bi1/2)TiO3-xPb(Mg1/3Nb2/3)O3 (NBT-xPMN) solid solution have been investigated. An addition of PMN into NBT transformed the structure of sintered samples from rhombohedral to pseudocubic phase where x is larger than 0.1. In calcined powders, however, the intermediate structure were observed between rhombohedral and cubic phases near x=0.1. The formation of solid solution between NBT and PMN modified the dielectric and piezoelectric properties of NBT to be suitable for high temperature dielectric and piezoelectric material. With increasing the content of PMN, the temperature-stability of εr(T) increased and the high temperature dielectric loss decreased. In addition, the piezoelectric property of NBT-xPMN was enhanced, for the decrease of coercive field and conductivity promoted the domain reversal under the high electric field of the poling process.  相似文献   

18.
The structure of an Al3+ stabilized phase Li3−3xAlxBO3 (x≈0.18) was determined by means of single crystal X-ray diffraction. This phase crystallizes in space group P6122 or P6522, with lattice constants , and Z=6. The unit cell consists of six layers of BO3 groups with Li+ cations distributing statistically on five crystallographic sites, none of which is fully occupied. The Li sites are close to each other and a three-dimensional network results when Li sites only within 1.65 Å are connected. Significant ionic conductivity was observed for this phase.  相似文献   

19.
The perovskite-type oxides Ba1−xLax(1−y)/2Euxy/2Nax/2TiO3 (0?x?0.5 and xy=0.04) were synthesized and characterized by X-ray diffraction as well as dielectric measurements and Raman spectroscopy. The crystal structure of these ceramics has been determined by the Rietveld refinement powder X-ray diffraction data at room temperature. These compounds crystallize at room temperature in tetragonal space group P4mm for 0?x?0.1 and in the cubic group for 0.2?x?0.5. The phase transition temperature TC (or Tm) decreases as x content increases. The degree of diffuseness of the phase transition is more pronounced for higher x content, implying the existence of a composition-induced diffuse phase transition of the ceramics with x?0.1. The evolution of the Raman spectra was studied as a function of various compositions at room temperature. The polarization state was checked by pyroelectric measurements.  相似文献   

20.
Three new rare earth metal-rich compounds, Gd4NiTe2, and Er5M2Te2 (M=Ni, Co), were synthesized in direct reactions using R, R3M, and R2Te3 (R=Gd, Er; M=Co, Ni) and single-crystal structures were determined. Gd4NiTe2 is orthorhombic and crystallizes in space group Pnma with four formula units per cell. Lattice parameters at 110(2) K are a=15.548(9), b=4.113(2), . Er5Ni2Te2 and Er5Co2Te2 are isostructural and crystallize in the orthorhombic space group Cmcm with two formula units per cell. Lattice parameters at 110(2) K are a=3.934(1), b=14.811(4), , and a=3.898(1), b=14.920(3), , respectively. Metal-metal bonding correlations were analyzed using the empirical Pauling bond order concept.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号