首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
两种压铸镁合金的微动磨损行为研究   总被引:13,自引:1,他引:12  
采用液压高精度材料试验机考察了压铸镁合金AZ91D和AM60B在平面-球面接触条件下的微动磨损行为,研究了循环次数、位移幅值、法向载荷和频率等参数对镁合金摩擦磨损性能的影响,分析了其磨斑表面和磨屑的微观形貌,并探讨了其微动磨损机理.结果表明:镁合金AZ91D和AM60B的摩擦系数随着法向载荷的增加而减小,磨损体积损失随频率增加而减小;AZ91D镁合金的抗微动损伤能力优于AM60B镁合金,二者的微动磨损机理相似,其主要磨损形式包括粘着磨损、表面疲劳(脱层)磨损、磨粒磨损以及明显的氧化磨损.  相似文献   

2.
Molecular simulation was performed to study the interaction between CaCO3 crystal and several oligomer inhibitors, by using the equilibrium morphology method to calculate the growth morphology of CaCO3 without inhibitors. The calculated morphology agreed well with SEM photographs. Then, a double-layer model was built to investigate the interaction between calcite crystal and oligomer inhibitors containing maleic anhydride (MA) and acrylic acid (AA). Interaction energy per gram of an oligomer inhibitor was introduced as a scale of inhibition efficiency of different monomers. The results indicated that, for calcite scale inhibition, acrylamide (AM) and vinyl phosphonic acid (VPA) were the most efficient monomers, while allylsulfonic acid (AS) was the poorest. Increasing proportion of AM in dimer inhibitor molecule would improve the inhibition efficiency of MA, though, for a trimer, such as MA–AA–AM, certain sequence of monomers in the inhibitor molecule was necessary besides higher proportion of AM.  相似文献   

3.
金属增材制造是一种兼顾复杂结构和高性能构件成形需求的颠覆性制造技术, 在航空、航天、交通、核电等领域具有广阔的应用前景和发展空间. 该技术大规模推广应用所面临的制造效率和控形保性挑战是一个涉及力学、光学、材料、机械、控制等多学科交叉的难题. 本文针对其中涉及的若干关键力学问题, 阐述了近年来国内外在面向金属增材制造的结构拓扑优化设计、制造过程数值模拟、成形材料与结构的缺陷表征和性能评价方面的研究进展, 并对金属增材制造的结构设计?制造模拟?性能评价的发展趋势进行了展望.   相似文献   

4.
Additive manufacturing (AM) is a novel and innovative production technology that can produce complex and lightweight engineering products. In AM components, as in all engineering materials, fatigue is considered as one of the principle causes of unexpected failure. In order to detect, localise and characterise cracks in various material components and metals, acoustic emission (AE) is used as a non-destructive monitoring technique. One of the main advantages of AE is that it can be also used for dynamic damage characterisation and specifically for crack propagation monitoring. In this research, we use AE to monitor the fatigue crack growth behaviour of Ti6Al4V components under four-point bending. The samples were produced by means of AM as well as conventional material. Notched and unnotched specimens were investigated with respect to the crack severity and crack detection using AE. The main AE signal parameters –such as cumulative events, hits, duration, average frequency and rise time– were evaluated and indicate sensitivity to damage propagation in order to lead to a warning against the final fracture occurrence. This is the first time that AE is applied in AM components under fatigue.  相似文献   

5.
The development of computational welding mechanics (CWM) began more than four decades ago. The approach focuses on the region outside the molten pool and is used to simulate the thermo-metallurgical-mechanical behaviour of welded components. It was applied to additive manufacturing (AM) processes when they were known as weld repair and metal deposition. The interest in the CWM approach applied to AM has increased considerably, and there are new challenges in this context regarding welding. The current state and need for developments from the perspective of the authors are summarised in this study.  相似文献   

6.
采用INSTRON准静态压缩试验机和分离式霍普金森压杆装置,研究固溶态AM80镁合金在室温准静态和冲击载荷下的变形行为及组织演变。准静态载荷下,流变应力随应变率(3×10-5~4×10-1 s-1)的升高逐渐降低,表现为负应变率敏感性;冲击载荷下,流变应力随应变率(7.00×102~5.20×103 s-1)的升高而升高,呈现出明显的正应变率敏感性。冲击载荷下AM80镁合金的变形机制以基面滑移和孪生为主,大量细小致密的形变孪生以及适量非基面滑移的启动是AM80镁合金在冲击载荷下流变应力明显高于准静态载荷的重要原因。此外,随应变率的升高,AM80镁合金变形的均匀性明显增强,当应变速率升至3.65×103 s-1时,冲击变形所引起的局部绝热温升软化大于应变硬化与应变速率硬化的总和,部分晶粒产生了明显的动态回复,使得孪晶密度和变形均匀性反而降低。  相似文献   

7.
Kim  F. H.  Moylan  S. P.  Phan  T. Q.  Garboczi  E. J. 《Experimental Mechanics》2020,60(7):987-1004
Experimental Mechanics - Insufficient data are available to fully understand the effects of metal additive manufacturing (AM) defects for widespread adoption of the emerging technology....  相似文献   

8.
由于增材制造逐层累积的工艺特点, 其成形材料力学性能往往不同于传统减材制造材料. 在航空航天、核工业以及医疗领域中, 对增材制造材料疲劳性能的研究不足导致其很难作为主承力件使用, 这制约着增材制造技术的进一步推广使用. 本文以增材制造316钢为对象, 通过仿真手段研究其高周疲劳性能, 研究表明循环载荷下滑移带与晶界处的裂纹萌生是增材制造316钢材料发生高周疲劳的主要原因. 根据提出的微观力学模型研究了增材制造316钢的高周疲劳性能, 其中分别使用唯象学晶体塑性理论和弹塑性内聚力模型模拟晶粒和晶界的力学行为. 为了准确评估增材制造316钢的高周疲劳性能, 本文针对于晶粒和晶界分别采用Papadopoulos疲劳准则和一种基于安定性理论的介观疲劳准则同时考虑位错滑移和晶界对疲劳性能的影响. 最后, 为了验证所提微观力学模型的有效性, 本文对比了增材制造316钢和轧制316钢高周疲劳性能的仿真结果. 与实验结果相同, 仿真结果显示增材制造316钢相较于轧制316钢具有更好的高周疲劳性能.   相似文献   

9.
Designer biosurfactants can be used to stabilise and functionalise interfaces. One particularly promising use is the stabilisation of oil-in-water emulsions, enabling fine tuning physical, chemical and biological surface properties. The ability of emulsion systems to carry high payloads makes them attractive for applications in medicine, food and fragrances, and cosmetics. However, they have limited long-term stability. Here we sought to use the metal ion-chelating ability of the biosurfactant peptide, AM1, to precipitate the formation of a gold metal shell on AM1-stabilised emulsions by electroless plating. We found that replacing the commonly used zinc(II) with palladium(II) for coordination by histidine residues of adjacent AM1 peptides produced interfacial films that maintained elasticity at acidic pH. Proton NMR suggested a coordination mechanism independent of the imidazole ring of the histidines. Nevertheless. stabilisation of emulsions at low pH enabled the deposition of a gold shell, albeit by an unexpected mechanism. We propose that gold nanoparticles forming in bulk are adsorbed onto the peptide-stabilised interface, accumulating into a particulate coating. The resulting one-step method for nanoparticle precipitation and shell formation will be useful for the creation of biocompatible core–shell particles for applications where large payloads of hydrophobic active compounds require stability over long time periods.  相似文献   

10.
双蒙皮夹层结构是航空航天装备中的特殊承力结构,其典型代表为发动机尾喷管中的同步环构件。近年来,增材制造技术为该类薄壁结构的创新型设计提供了有利条件。但增材制造有其特殊的工艺要求,基于传统拓扑优化得到的设计结果往往存在大量的悬空区域,无法直接应用于增材制造工艺。因此,需要在优化设计阶段统筹考虑结构的力学性能和自支撑工艺约束。针对上述问题,本文提出了一种面向增材制造的双蒙皮夹层薄壁结构加筋拓扑优化方法,可在一次优化中同时得到优化的加筋布局和非均匀点阵分布,从而解决悬空结构的支撑问题,确保优化结果的工艺可达性。为了平衡计算成本和分析精度,本文采用渐进均匀化方法来求解不同类型单胞等效弹性性能,以适应不同复杂单胞构型。基于上述方法,本文给出了某发动机同步环结构的拓扑优化算例,结果表明,本文优化设计方法可以实现双蒙皮夹层结构中夹层加筋和点阵的共同优化,为航空航天装备中发动机同步环结构轻量化设计提供了思路。  相似文献   

11.
The vibration properties of two-dimensional (2D) finite acoustic metamaterials (AMs) consisting of discrete masses and springs are investigated in this paper. In order to clarify the mechanisms of the bandgaps in AMs, the infinite symmetrical systems are also studied, especially the impact of the physical asymmetry caused by the discrepant stiffness coefficients of the springs connecting the unit-cells. Although the asymmetry cannot change the bandgap width, the change of the phase velocity and the generation of the shear mode have been proven analytically. To study the vibration properties of the finite AM model, the effective mass of each unit-cell is used. The effective mass properties of the unit-cell with single resonator and multi-resonators in 2D AMs subjected to a time-harmonic excitation are discussed. The effects of the number of the unit-cells, multi-resonators in each unit-cell, graded resonators in the finite AM model on the vibration suppression are thoroughly examined by the frequency response analysis. Numerical results show that the degree of the vibration attenuation is related to the size of the model and the number of the bandgaps changes corresponding to the disorders of the local resonators. Furthermore, imperfections or defects are introduced into the finite AM system. Wave propagation and guiding in a finite model for straight waveguide are investigated and discussed. The defect states induced by changing the central resonator of a supercell are demonstrated. Defect bands are obtained and their location is illustrated.  相似文献   

12.
铺粉工艺是基于粉床的增材制造(additive manufacturing, AM)技术中的关键工序之一. 滚筒铺粉工艺参数包括铺粉层厚H, 滚筒直径D, 滚筒的旋转速度ω和平移速度V, 对增材制造工艺中的粉体铺展性具有重要影响. 本文以尼龙粉体为研究对象, 采用离散元法(discrete element method, DEM)模拟其滚筒铺展过程, 建立沉积分数、覆盖率和沉积速率3个铺展性指标. 采用中心复合设计(central composite design, CCD)生成30组仿真案例, 通过响应曲面法(response surface methodology, RSM)拟合了3个铺展性指标的回归模型. 采用方差分析证明了回归模型的准确性和预测的有效性, 并详细分析了工艺参数对粉体铺展性指标的影响规律. 结果表明, 铺粉层厚H是最大的影响因素, 平移速度V是次要的影响因素, 滚筒直径D和滚筒的旋转速度ω对粉体铺展性指标影响较小, HV和DV为影响粉体铺展性指标的主要交互因素. 以3个铺展性指标为优化目标, 采用期望值法对滚筒铺粉工艺参数进行多目标优化, 获得了预测的最优铺粉工艺参数和粉体铺展性指标组合, 并通过实验验证了粉体铺展性指标的预测结果与实验结果吻合良好. 本文的研究结果可指导增材制造中滚筒铺粉工艺参数的优化.   相似文献   

13.
14.
Based on finite difference and control-volume scheme, a model was developed to simulate fluid flow in forced convection and heat transfer in pressurized solidification of a cylindrical squeeze casting of magnesium alloy AM50. Pressure-dependent heat transfer coefficients (HTC) and non-equilibrium solidification temperatures were determined by experimental measurements. With the measured HTC and temperatures under the different pressures, the temperature distributions and the cooling behaviors of squeeze cast were simulated.  相似文献   

15.
Poly(3-hexylthiophene) (PBHT) was used in a solid-state dye-sensitized solar cell (S-DSC) with a broad- absorption metal-free organic dye sensitizer 1,2,4,5-benzenetetracarboxylic acid (BzTCA). Under full- sunlight irradiation (AM 1.5 G, 100 mW/cm2 ), an overall conversion efficiency of 3.21% was achieved, which represents one of the highest efficiencies reported in an S-DSC. Our results indicate that the P3HT polymer is a promising material as both a hole conductor and an assistant sensitizer in the fabrication of solid-state DSCs.  相似文献   

16.
在B3LYP/6 31G 水平下用密度泛函理论(DFT)全优化了氨基硝基苯并二氧化呋咱(CL 18)的分子几何构型,进行了电子结构计算。分析了红外振动频率并以0.96加以校正,通过比较,计算值与实测值符合较好。结果表明,CL 18分子骨架为平面构型。从集居数分析发现氧化呋咱环内的NO键最弱,预示该部位易引发分解和起爆。AM1、MINDO/3、MINDO、MINDO d方法不适于CL 18生成热计算,PM3方法较适用。  相似文献   

17.
Sensitivity analysis of composite laminated plates with bonding imperfection is carried out based on the radial point interpolation method (RPIM) in a Hamilton system. A set of hybrid governing equations of response and sensitivity quantities is reduced using the spring-layer model and the modified Hellinger-Reissner (H-R) variational principle. The analytical method (AM), the semi-analytical method (SAM), and the finite difference method (FDM) are used for sensitivity analysis based on the reduced set of hybrid governing equations. A major advantage of the hybrid governing equations is that the convolution algorithm is avoided in sensitivity analysis. In addition, sensitivity analysis using this set of hybrid governing equations can obtain response values and sensitivity coefficients simultaneously, and accounts for bonding imperfection of composite laminated plates.  相似文献   

18.
Chien Wei-zang,one of the founders of modern mechanics in China,a world renowned scientist,educator,outstanding social leader,prominent leader of the Chinese Democratic League and a close friend of the Communist Party of China,the Vice Chairman of the 6th,7th,8th,and 9th National Committee of Chinese People's Political Consultative Conference, the Vice Chairman of the 5th, 6th, and 7th Central Committee of Chinese Democratic League, the Honorary Chairman of the 7th, 8th, and 9th Central Committee of Chinese Democratic League, a senior member of Chinese Academy of Science, the President of Shanghai University, the Director of Shanghai Institute of Applied Mathematics and Mechanics, and the Honorary Editor-in Chief of Applied Mathematics and Mechanics, Passed away at the age of 98 in Shanghai at 6:20 AM on July 30,2010.  相似文献   

19.
In this paper, a constitutive framework based on a rate-dependent crystal plasticity theory is employed to simulate the large strain deformation phenomena in hexagonal closed-packed (HCP) metals such as magnesium. The new framework is incorporated into in-house codes. Simulations are performed using the new crystal plasticity model in which crystallographic slip and deformation twinning are the principal deformation mechanisms. Simulations of various stress states (uniaxial tension, uniaxial compression and the so-called ring hoop tension test) for the magnesium alloy AM30 are performed and the results are compared with experimental observations of specimens deformed at 200 °C. Numerical simulations of forming limit diagrams (FLDs) are also performed using the Marciniak–Kuczynski (M–K) approach. With this formulation, the effects of crystallographic slip and deformation twinning on the FLD can be assessed.  相似文献   

20.
Advancements in manufacturing technology, including the rapid development of additive manufacturing (AM), allow the fabrication of complex functionally graded material (FGM) sectioned beams. Portions of these beams may be made from different materials with possibly different gradients of material properties. The present work proposes models to investigate the free vibration of FGM sectioned beams based on onedimensional (1D) finite element analysis. For this purpose, a sample beam is divided into discrete elements, and the total energy stored in each element during vibration is computed by considering either the Timoshenko or Euler-Bernoulli beam theory. Then, Hamilton's principle is used to derive the equations of motion for the beam. The effects of material properties and dimensions of FGM sections on the beam's natural frequencies and their corresponding mode shapes are then investigated based on a dynamic Timoshenko model (TM). The presented model is validated by comparison with three-dimensional (3D) finite element simulations of the first three mode shapes of the beam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号