首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Short-term solid-phase microextraction (SPME) was performed to test a recently proposed semi-empirical model for the prediction of concentrations of analyte in water samples from the fibre-extracted mass without further calibration. The mass uptake rates obtained for benzene, toluene, ethylbenzene and p-xylene (BTEX) differ considerably from the before published, showing that interfibre comparability is a serious issue. The relative prediction errors are between -55% for benzene and +82% for p-dichlorobenzene under optimal conditions, i.e. they are by an order of magnitude higher than originally published. A sensitivity analysis shows the dominant influence of the estimated thickness of the diffusional boundary layer around the fibre on the concentration predicted. Empirical modification of the model equation for this parameter yields satisfactory results under the conditions tested for both BTEX and the selected chlorobenzenes.  相似文献   

2.
《Fluid Phase Equilibria》1986,31(3):299-311
Vapor-liquid equilibrium data for carbon dioxide - benzene, carbon dioxide - toluene, and carbon dioxide - p-xylene were measured for pressures up to 6.5 MPa, and at temperatures of 353 K, 373 K, and 393 K. The solubility of benzene in the dense carbon dioxide vapor phase is higher than that of either toluene or p-xylene. In the liquid phase, carbon dioxide is more soluble in p-xylene than in toluene or benzene. The experimental data obtained were compared with calculations from three correlations: the Peng-Robinson equation, the UNIFAC activity coefficient correlation, and the Perturbed-Anisotropic- Chain Theory (PACT). All three correlations predict phase compositions in good agreement with the experimental data.  相似文献   

3.
Enthalpies of mixing of isopropyl ether with cyclohexane, benzene, mesitylene, ethylbenzene, toluene and p-xylene were determined at 27°C and were found to decrease in the same order as the second components listed. The results are compared with Flory's state theory.  相似文献   

4.
A solid-phase microextraction (SPME) fiber coated with single walled carbon nanotubes (SWCNTs) was prepared by electrophoretic deposition and treated at 500 °C in H2 stream. In order to evaluate the characteristics of the obtained fiber, it was applied in the headspace solid-phase microextraction (HS-SPME) of benzene, toluene, ethylbenzene and xylenes (BTEX) from water sample and quantification by gas chromatography with flame ionization detection (GC-FID). The results indicated that the thermal treatment with H2 enhanced the extraction of the SWCNTs fiber for BTEX significantly. Thermal stability and durability of the fiber were also investigated, showing excellent stability up to 350 °C and life time over 120 times. In the comparison with the commercial CAR–PDMS fiber, the SWCNTs fiber showed similar and higher extraction efficiencies for BTEX. Under the optimized conditions, the linearity, LODs (S/N = 3) and LOQs (S/N = 10) of the method based on the SWCNTs fiber were 0.5–50.0, 0.005–0.026 and 0.017–0.088 μg/L, respectively. Repeatability for one fiber (n = 3) was in the range of 1.5–5.6% and fiber-to-fiber reproducibility (n = 3) was in the range of 4.2–8.3%. The proposed method was successfully applied in the analysis of BTEX compounds in seawater, tap water and wastewater from a paint plant.  相似文献   

5.
Multiple headspace-solid phase microextraction (MHS-SPME) is a recently developed technique for the quantification of analytes in solid samples that avoids the matrix effect. This method implies several consecutive extractions from the same sample. In this way, the total area corresponding to complete extraction can be directly calculated as the sum of the areas of each individual extraction when the extraction is exhaustive, or through a mathematical equation when it is not exhaustive. In this paper, the quantitative determination of benzene, toluene, ethylbenzene and xylene isomers (BTEX) in a certified soil (RTC-CRM304, LGC Promochem) and in a contaminated soil by multiple HS-SPME coupled to a gas chromatography-flame ionisation detector (GC-FID) is presented. BTEX extraction was carried out using soil suspensions in water at 30 degrees C with a 75 microm carboxen-polydimethylsiloxane (CAR-PDMS) fibre and calibration was carried out using aqueous BTEX solutions at 30 degrees C for 30 min with the same fibre. BTEX concentration was calculated by interpolating the total peak area found for the soils in the calibration graphs obtained from aqueous solutions. The toluene, ethylbenzene, o-xylene and m,p-xylene concentrations obtained were statistically equal to the certified values.  相似文献   

6.
A method for determination of benzene, toluene, ethylbenzene, and xylenes (BTEX) in urine is described. Determination is performed by dynamic headspace (purge and trap) gas chromatography with photoionization detection. The features of the described method, i.e. detection limits of 15–35 ng L–1, relative standard deviations of 0.2–10%, accuracy of 80–100%, removal of interference of many compounds present in urine, sharp chromatographic peaks because of cryogenic refocusing, no sample preparation, make it convenient for biological monitoring of exposure to low levels of BTEX. However, the method is time‐consuming and sophisticated.  相似文献   

7.
Monolithic carbon aerogels were obtained by carbonization of organic aerogels prepared by polymerization of resorcinol and formaldehyde under different conditions. Some carbon aerogels obtained were further CO2-activated. Samples were characterized by gas adsorption, scanning electron microscopy, high-resolution transmission electron microscopy, and mechanical tests. Benzene, toluene and xylenes were adsorbed from dry air by using carbon bed columns, obtaining the breakthrough curves. There was no correlation between the amount adsorbed at the breakthrough point and the volume of micropores narrower than 0.7 nm. Conversely, a good linear relationship between the amount adsorbed at the breakthrough point and the total micropore volume up to a mean micropore width of around 1.05 nm was found. In addition, the height of the mass transfer zone decreased with the mean width of the total micropores up to a value of around 1.05-1.10 nm. One of the best adsorbents obtained showed the lowest height of the mass transfer zone and one of the highest amounts adsorbed at the breakthrough point, either per mass or volume unit. However, it had a lower elastic modulus and compressive strength than other monolithic carbon aerogels, although its compressive strength (3 MPa) was still high enough to use it in carbon bed columns. The sample with the best mechanical properties was a poorer adsorbent. Regeneration of the exhausted adsorbents allowed the recovery of the hydrocarbons adsorbed without any appreciable loss of adsorption capacity of the carbon bed.  相似文献   

8.
A simple and novel SPE system for benzene, toluene, ethylbenzene, and xylene isomers (BTEX) compounds in water is proposed in which samples are directly propelled from a 15 mL glass vial through a sorbent column by means of a needle, thereby avoiding evaporative losses and the sorption of BTEX on the manifold materials. Following elution with 150 microL of ethyl acetate, 1 microL of extract is injected into a gas chromatograph-mass spectrometer system. A comparative study of various sorbent materials (C60 fullerene, Tenax TA, and RP-C18) revealed C60 fullerene to be the best choice in terms of sensitivity (a likely result of its increased sample breakthrough volume), precision (the surfactant medium used to prepare samples minimizes evaporative losses), selectivity (C60 fullerene only interacts with nonpolar aromatic compounds), and reusability (columns containing 60 mg of C60 fullerene remain serviceable for at least 6 months). This C60 fullerene-based method exhibits a linear range of 0.1-100 microg/L, a detection limit of 0.04 microg/L, and an RSD of ca. 3%. It was applied to the determination of BTEX in various types of water including sea and waste water with good precision.  相似文献   

9.
10.
In this study an atomic absorption spectrophotometer equipped with a selenium hollow-cathode lamp was used for analysis of BTEX (benzene, toluene, ethylbenzene and xylenes) in headspace of aqueous solutions. Initially effective factors on headspace such as volume of solution, stirring time, stirring speed, velocity of carrier gas, temperature, number of strippings, addition of salts and salt concentration were investigated and optimum conditions were selected. By addition of salt in different concentrations, different absorbances were obtained for headspace, therefore, binary mixtures of BTEX were analyzed with simultaneous equations. Obtained results agreed with actual amounts and repeatability was very good (RSD% < 3). Correlation coefficients (r) for calibration curves were about 0.999. This proposed method is comparable with absorbance determination of solution with respect to correlation coefficient, linear dynamic range, limit of detection (LOD) and relative standard deviation (RSD), but this method is less susceptible to interferences and more selective.  相似文献   

11.
A rapid and reproducible method is described that employs solid-phase extraction (SPE) using dichloromethane, followed by gas chromatography (GC) with flame ionization detection for the determination of benzene, toluene, ethylbenzene, xylene and cumene (BTEXC) from Buriganga River water of Bangladesh. The method was applied to detect BTEXC in a sample collected from the surface, or 5 cm depth of water. Two-hundred milliliters of n-hexane-pretreated and filtered water samples were applied directly to a C18 SPE column. BTEXC were extracted with dichloromethane and the BTEX concentrations were obtained to be 0.1 to 0.37 microg ml(-1). The highest concentration of benzene was found as 0.37 microg ml(-1) with a relative standard deviation (RSD) of 6.2%; cumene was not detected. The factors influencing SPE e.g., adsorbent types, sample load volume, eluting solvent, headspace and temperatures, were investigated. A cartridge containing a C18 adsorbent and using dichloromethane gave a better performance for the extraction of BTEXC from water. Average recoveries exceeding 90% could be achieved for cumene at 4 degrees C with a 2.7% RSD.  相似文献   

12.
Headspace solvent microextraction (HSM) is a novel method of sample preparation for chromatographic analysis. It involves exposing a microdrop of high-boiling point organic solvent extruded from the needle tip of a gas chromatographic syringe to the headspace above a sample. Volatile organic compounds are extracted and concentrated in the microdrop. Next, the microdrop is retracted into the microsyringe and injected directly into the chromatograph. HSM has a number of advantages, including renewable drop (no sample carryover), low cost, simplicity and ease of use, short time of analysis, high sensitivity and low detection limits, good precision, minimal solvent use, and no need for instrument modification. This paper presents analytical characteristics of HSM as applied to the determination of benzene, toluene, ethylbenzene and xylenes in water.  相似文献   

13.
The suitability of "capillary extractors" is demonstrated for the "negligible depletion" extraction of benzene, toluene, ethylbenzene and xylenes in a clean-water matrix. Extraction set-up and major extractor parameters (length, internal diameter, and film thickness) are chosen to allow rugged analysis by GC with flame ionization detection. With the selected negligible extraction conditions, the efficiency for every consecutive extraction is about 2-3% of the dissolved amount.  相似文献   

14.
A novel nanocomposite coating of poly(o‐toluidine) and oxidized multiwalled CNTs (MWCNTs, where CNTs is carbon nanotubes) was electrochemically prepared on a stainless‐steel wire. The applicability of the fiber was assessed for the headspace solid‐phase microextraction of benzene, toluene, ethylbenzene, and xylenes in aqueous samples followed by GC with flame ionization detection. In order to obtain an adherent and stable composite coating, several experimental parameters related to the coating process, such as polymerization potential and time, and the concentration of o‐toluidine and oxidized MWCNTs were optimized. The combination of MWCNTs and polymer in a nanocomposite form presents desirable opportunities to produce materials for new applications. The effects of various parameters on the efficiency of the headspace solid‐phase microextraction process, such as desorption temperature and time, extraction temperature and time, and ionic strength were also investigated. At the optimum conditions, LODs were 0.03–0.06 μg/L. The method showed linearity in the range of 0.5–300 μg/L with coefficients of determination >0.99. The intraday and interday RSDs obtained at a 5 μg/L concentration level (n = 5) using a single fiber were 1.2–5.2 and 3.2–7.5%, respectively. The fiber‐to‐fiber RSD (%; n = 3) at 5 μg/L was 6.1–9.2%.  相似文献   

15.
We have developed a modified method for the extraction and preconcentration of benzene, toluene, ethylbenzene and xylenes (BTEX) in aqueous samples. It based on dispersive liquid-liquid microextraction along with solidification of floating organic microdrops. The dispersion of microvolumes of an extracting solvent into the aqueous occurs without dispersive solvent. Various parameters have been optimized. BTEX were quantified via GC with FID detection. Under optimized conditions, the preconcentration factors range from 301 to 514, extraction efficiencies from 60 to 103 %, repeatabilities from 2.2 to 4.1 %, and intermediate precisions from 3.5 to 7.0 %. The relative recovery for each analyte in water samples at three spiking levels is >85.6 %, with a relative standard deviation of <7.4 %.
Figure
A modified method based on dispersive liquid-liquid microextraction to preconcentrate benzene, toluene, ethylbenzene and xylenes was investigated. The method was rapid, precise, efficient, and sensitive. Experimental parameters affecting the extraction process were evaluated. The optimized procedure was validated according to the ICH guidance.  相似文献   

16.
In this study, polyaniline-co-poly(o-toluidine)/graphene oxide nanosheets composite was electrodeposited on the surface of a stainless steel wire as a new coating for headspace solid-phase microextraction of benzene, toluene, ethylbenzene and xylenes (BTEX) with gas chromatography–mass spectrometry. The characteristics of the new coating were evaluated by the scanning electron microscopy and Fourier transform infrared spectroscopy. To study the coating performance, the influence of various parameters such as deposition potential and time, concentration of the monomers and GONSs, desorption temperature and time, extraction temperature and time and ionic strength on BTEX extraction efficiency was investigated. At the optimum conditions, the linear ranges and detection limits (S/N?=?3) were found 0.01–50 and 0.001–0.05 ng mL?1, respectively. The intra-day and inter-day relative standard deviations (RSDs) at 0.5 ng mL?1 concentration level (n?=?5) using a single-fiber were from 5.4 to 8.3 and 7.5 to 10.3%, respectively. The fiber-to-fiber RSDs % (n?=?3) was between 8.4 and 12.5%. Finally, the development method was applied to the analysis of various real samples.  相似文献   

17.
In this study, graphene nanosheets (GNSs) were adopted as an adsorbent to investigate their characterizations and performance for adsorbing benzene and toluene in aqueous solutions. In order to determine the best fit model for each considered system, nonlinear regressions were used. Experimental data of adsorption were corroborated by the combined Langmuir–Freundlich (Sips) models for the isotherms and pseudo‐first‐order model for the kinetics. As a result, GNSs displayed high affinity to the aromatic hydrocarbons such as benzene and toluene. The high affinity was dominated by π–π interactions to the flat surface and the sieving effect of the powerful groove regions formed by wrinkles on GNS's surfaces. Hydrophobic properties and molecular sizes of benzene and toluene affected the adsorption of GNS. In addition, the favorable adsorption of toluene possibly was due to the increase in the molecular weight, decrease in the solubility, and the increase in the boiling point. A comparative study on the benzene and toluene adsorption revealed that favorable adsorption of GNSs compared with that of carbon nanotubes was consistent with the order of physical properties such as specific surface area and pore's volume. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The aim of the study was to analyse BTEX compounds (benzene, toluene, ethylbenzene, xylenes) in air by solid phase micro-extraction/gas chromatography/mass spectrometry (SPME/GC/MS), and this article presents the features of the calibration method proposed. Examples of real-world air analysis are given. Standard gaseous mixtures of BTEX in air were generated by dynamic dilution. SPME sampling was carried out under non-equilibrium conditions using a Carboxen/PDMS fibre exposed for 30 min to standard gas mixtures or to ambient air. The behaviour of the analytical response was studied from 0 to 65 g/m3 by adding increasing amounts of BTEX to the air matrix. Detection limits range from 0.05 to 0.1 g/m3 for benzene, depending on the fibre. Inter-fibre relative standard deviations (reproducibility) are larger than 18%, although the repeatability for an individual fibre is better than 10%. Therefore, each fibre should be considered to be a particular sampling device, and characterised individually depending on the required accuracy. Sampling indoor and outdoor air by SPME appears to be a suitable short-delay diagnostic method for volatile organic compounds, taking advantage of short sampling time and simplicity.  相似文献   

19.
A rapid determination of benzene, toluene, ethylbenzene and the three xylene isomers (BTEX), including a nearly baseline separation of the xylene isomers in environmental samples within 1 min has been carried out using low-pressure gas chromatography-ion trap mass spectrometry (LP-GC-IT-MS). In order to evaluate the different parameters which may influence the performance of LP-GC-IT-MS, different column and mass spectral parameters were varied. Comparing LP-GC-IT-MS with the conventional equivalent, we obtained excellent detection limits as well as a good RSD of 8-13% in ition to a much shorter analysis time. In order to evaluate LP-GC-IT-MS for use in environmental samples, we determined BTEX in air.  相似文献   

20.
In the present study, an infrared (IR) high temperature cell was used, in combination with a Fourier transform infrared (FTIR) spectrometer for the development of an alternative temperature-programmed desorption (TPD) procedure. Three different adsorbates, i.e., benzene, toluene and ethylbenzene were non-isothermally desorbed from two zeolites H-ZSM-5 and H-Beta. The FTIR-TPD profiles were fitted with the help of the complementary error function. The fitting process was carried out with the help of a computer program which allows us to calculate two parameters, the temperature, T0 (K) and the temperature range ΔT (K), which, in conjunction with the complementary error function, characterizes the FTIR-TPD profile. Was found that the parameter T0 is linked with the adsorption energy of the adsorbate in the zeolite and the parameter ΔT was correlated with the transport process of the desorbed molecules inside the zeolites during the desorption process and with the presence of more than one type of adsorption sites. In conclusion, was confirmed that the FTIR-TPD methodology is appropriate for in situ observation of adsorbed molecules on zeolites, and that this technique makes available information concerning the adsorbed state of guest molecules in non-isothermal desorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号