首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Electrochemiluminescent biosensors are nowadays an established technology in the field of immunosensors and diagnostics. Along with the advent of nanotechnology, the marriage between electrochemiluminescence and nanomaterials results in promising enhancing strategies in many biosensor applications. Among nanomaterials, carbon-based ones are the most used, as (i) scaffolds, (ii) luminophores and (iii) electrode materials of the sensor. In this review, we describe the importance of a rational modification and functionalization of carbon nanomaterials to optimize electrochemiluminescence signal, and we also resume the latest and most relevant applications of electrochemiluminescent biosensors based on carbon nanomaterials.  相似文献   

3.
An electrochemiluminescent glucose biosensor was proposed based on gold nanoparticle-catalyzed luminol electrochemiluminescence (ECL). Gold nanoparticles were self-assembled onto silica sol–gel network, and then glucose oxidase was adsorbed on the surface of gold nanoparticles. The surface assembly process and the electrochemistry and ECL behaviors of the biosensor were investigated. The assembled gold nanoparticles could efficiently electrocatalyze luminol ECL. ECL intensity of the biosensor depended on scan rate, luminol concentration, and size of gold nanoparticles. The response of the ECL biosensor was linear over the range 1 μM to 5 mM with a detection limit of 0.2 μM glucose and showed satisfying reproducibility, stability and selectivity.  相似文献   

4.
In this review, the basic principles and apparatus of ECL imaging were briefly introduced at first. Then several latest and representative applications of ECL imaging based on nanomaterials and micro-/nanostructures were overviewed. Finally, the superiorities and challenges in ECL imaging for further development were discussed.  相似文献   

5.
Electrochemiluminescence (ECL) is a kind of luminescent phenomenon caused by electrochemical reactions. Based on the advantages of ECL including low background, high sensitivity, strong spatiotemporal controllability and simple operation, ECL imaging is able to visualize the ECL process, which can additionally achieve high throughput, fast and visual analysis. With the development of optical imaging technique, ECL imaging at micro- or nanoscale has been successfully applied in immunoassay, cell imaging, biochemical analysis, single-nanoparticle detection and study of mechanisms and kinetics of reactions, which has attracted extensive attention. In this review, the basic principles and apparatus of ECL imaging were briefly introduced at first. Then several latest and representative applications of ECL imaging based on nanomaterials and micro-/nanostructures were overviewed. Finally, the superiorities and challenges in ECL imaging for further development were discussed.  相似文献   

6.
光导纤维电化学发光葡萄糖传感器的研究   总被引:7,自引:0,他引:7  
以碳糊为固定化载体 ,将葡萄糖氧化酶固定在碳糊电极上 ,制成了光导纤维电化学发光葡萄糖生物传感器。葡萄糖的酶催化反应、鲁米诺的电化学氧化和化学发光反应在电极表面同时发生 ,因此该传感器的信号响应在 1 0 s内达到发光强度峰值。葡萄糖浓度在 1 .0× 1 0 -5~ 2 .0× 1 0 -2 mol/L范围内与发光强度呈线性关系 ,检出限为 6.4× 1 0 -6mol/L,可应用于市售饮料中葡萄糖的测定  相似文献   

7.
In this paper, a novel electrochemiluminescence (ECL) imaging sensor array was developed for determination of hydrogen peroxide (H2O2), which was based on Cu/Zn alloy galvanic cell generated ECL. In alkaline solution, Cu/Zn galvanic cell was formed because of corrosion effect, the galvanic cell could supply stable potential for ECL generation of luminol, and the weak ECL emission could be enhanced by H2O2. The galvanic cell sensor array was designed by putting Cu/Zn alloy in 96-well microtiter plates separately. The relative ECL intensity was proportional with the concentration of hydrogen peroxide in the range of 1.0 × 10−6 to 1.0 × 10−4 mol l−1 and the detection limit was 3.0 × 10−7 mol l−1 (3σ), the relative standard deviation (R.S.D.) for 11 parallel measurements of 1.0 × 10−5 mol l−1 H2O2 was 4.0%.  相似文献   

8.
The ultrasensitive detection of microRNAs (miRNAs) is currently pursued for the diagnosis of diseases. Due to its outstanding sensitivity, electrochemiluminescence (ECL) is expected to be very effective toward the above goal. In this short review, bioanalytical strategies currently employed in ECL detections of miRNAs are summarized. ECL sensors based on electrochemiluminescent resonance energy transfer (ERET), hybridization chain reaction (HCR), strand displacement reaction (SDR), and other strategies, have an extremely low detection limit of 10?18 M miRNA. In particular, the establishment of miniaturized ECL sensors has shown great potential for point-of-need testing of diseases.  相似文献   

9.
Engin Asav 《Talanta》2009,78(2):553-987
In this study, a new biosensor based on the inhibition of tyrosinase for the determination of fluoride is described. To construct the biosensor tyrosinase was immobilized by using gelatine and cross-linking agent glutaraldehyde on a Clark type dissolved oxygen (DO) probe covered with a teflon membrane which is sensitive for oxygen. The phosphate buffer (50 mM, pH 7.0) at 30 °C were established as providing the optimum working conditions. The method is based on the measurement of the decreasing of dissolved oxygen level of the interval surface that related to fluoride concentration added into reaction medium in the presence of catechol. Inhibitor effect of fluoride results in decrease in dissolved oxygen concentration. The biosensor response depends linearly on fluoride concentration between 1.0 and 20 μM with a response time of 3 min.In the characterization studies of the biosensor some parameters such as reproducibility, substrate specificity and storage stability were carried out. From the experiments, the average value (x), Standard deviation (S.D) and coefficient of variation (C.V %) were found as 10.5 μM, ± 0.57 μM, 5.43%, respectively for 10 μM fluoride standard.  相似文献   

10.
Su Y  Wang J  Chen G 《Talanta》2005,65(2):531-536
Epinephrine was found to be able to strongly enhance the electrochemiluminescence (ECL) of lucigenin system by using the anodic potential sweep. Based on which, a novel ECL method for the determination of epinephrine was developed. Under the optimum condition, the enhanced ECL intensity was linear with the epinephrine concentration in the range of 4.0 × 10−8 to 2.0 × 10−7 mol L−1. The detection limit (defined as S/N = 3) was 2.4 × 10−8 mol L−1, and the relative standard deviation was 2.7% for 1.0 × 10−7 mol L−1 epinephrine (n = 11). The method was successfully applied to the determination of epinephrine in pharmaceutical samples with satisfactory results. In addition, the possible mechanism for the lucigenin ECL system in the presence of epinephrine has also been discussed.  相似文献   

11.
A new, highly sensitive, fast responding and stable potentiometric biosensor for creatinine determination is developed. The biosensor is based on an ammonium ion-selective electrode. Creatinine deiminase (EC 3.5.4.21) is chemically immobilized on the surface of the polymeric ion-sensitive membrane in the form of monomolecular layer using a simple, one-step carbodiimide covalent attachment method. The resulting enzyme electrodes are useful for measurement under flow injection analysis (FIA) conditions. The biosensors exhibit excellent operational and storage stability. The enzyme electrodes retain over 70% of initial sensitivity after ten weeks of work under FIA conditions. The storage stability at 4 °C is longer than half a year without loss of sensitivity. Under optimized conditions near 30 samples per hour can be analyzed and the determination range (0.02-20.0 mmol l−1) fully covers creatinine concentrations important from clinical and biomedical point of view. The simple biosensor/FIA system has been successfully used for determination of creatinine in urine, serum and posthemodialysate samples.  相似文献   

12.
Haghighi B  Bozorgzadeh S 《Talanta》2011,85(4):2189-2193
ZnO nanoparticles (nanoZnO) were decorated on multiwalled carbon nanotubes (MWCNTs) and then the prepared nano-hybrids, nanoZnO-MWCNTs, were immobilized on the surface of a glassy carbon electrode (GCE) to fabricate nanoZnO-MWCNTs modified GCE. The prepared electrode, GCE/nanoZnO-MWCNTs, showed excellent electrocatalytic activity towards luminol electrochemiluminescence (ECL) reaction. The electrode was then further modified with lactate oxidase and Nafion to fabricate a highly sensitive ECL lactate biosensor. Two linear dynamic ranges of 0.01-10 μmol L−1 and 10-200 μmol L−1 were obtained for lactate with the correlation coefficient better than 0.9996. The detection limit (S/N = 3) was 4 nmol L−1 lactate. The relative standard deviation for repetitive measurements (n = 6) of 10 μmol L−1 lactate was 1.5%. The fabrication reproducibility for five biosensors prepared and used in different days was 7.4%. The proposed ECL lactate biosensor was used for determination of lactate in human blood plasma samples with satisfactory results.  相似文献   

13.
流动注射电化学发光分析法测定氨苄西林   总被引:3,自引:1,他引:3  
基于氨苄西林对鲁米诺在铂电极上弱的电氧化发光信号的强增敏作用与流动注射技术的结合,建立了一种测定氨苄西林的电化学发光分析新方法。该法测定氨苄西林的检出限为5.0×10-8g mL,线性范围为8.0×10-8~5.0×10-5g mL,相对标准偏差为2.0%(n=11)。已成功地用于样品中氨苄西林的测定。  相似文献   

14.
A highly sensitive telomerase detection method that combines telomeric repeat amplification protocol (TRAP) and magnetic beads based electrochemiluminescence (ECL) assay has been developed. Briefly, telomerase recognizes biotinylated telomerase synthesis primer (B-TS) and synthesizes extension products, which then serve as the templates for PCR amplification using B-TS as the forward primer and tris-(2′2′-bipyridyl) ruthenium (TBR) labeled ACX (TBR-ACX) as the reversed primer. The amplified product is captured on streptavidin-coated paramagnetic beads and detected by ECL. Telomerase positive HeLa cells were used to validate the feasibility of the method. The experimental results showed down to 10 cancer cells can be detected easily. The method is a useful tool for telomerase activity analysis due to its sensitivity, rapidity, safety, high throughput, and low cost. It can be used for screening a large amount of clinical samples.  相似文献   

15.
Herein, one water‐soluble functionalized ionic liquid, 1‐butyl‐3‐methylimidazolium dodecyl sulfate ([BMIm+][C12H25SO?4]), was designed and its superiorities either used as supporting electrolytes or as additives for successful establishment of MEKC with electrochemiluminescence (ECL) detection (MEKC‐ECL) method were investigated. Compared with the common supporting electrolytes such as phosphate solution, 1‐butyl‐3‐methylimidazolium dodecyl sulfate solution used as running buffers led to greatly enhanced ECL intensities and column efficiencies for negative targets, a little increase for neutral‐charge ones while maintained nearly unchanged for positive ones due to the electrostatic forces between the large cation BMIm+ and the solutes and the hydrophobic interactions resulting from the large anion C12H25SO?4. Moreover, resolution efficiency between analytes was significantly improved. As the existence of ionic liquid moiety, BMIm+, accelerated the electron transfer at the electrode surface, the poisoning effect of long chain C12H25SO?4 on the electrode surface was eliminated and reproducible ECL intensities with relative standard derivation of 1.02% (n=6) were obtained. The proposed novel MEKC‐ECL system was again validated by the baseline separated two similar amino acids of proline and hydroxyproline with lower detection limits of 0.5 and 0.8 μM (S/N=3), respectively.  相似文献   

16.
This paper reports a novel detection method for DNA hybridization based on the electrochemiluminescence (ECL) of Ru(bpy)(3)(2+) with a DNA-binding intercalator as a reductant of Ru(bpy)(3)(3+). Some ECL-inducible intercalators have been screened in this study using electrochemical methods combined with a chemiluminescent technique. The double-stranded DNA intercalated by doxorubicin, daunorubicin, or 4',6-diamidino-2-phenylindole (DAPI) shows a good ECL with Ru(bpy)(3)(2+) at +1.19 V (versus Ag/AgCl), while the non-intercalated single-stranded DNA does not. In order to stabilize the self-assembled DNA molecules during ECL reaction, we constructed the ECL DNA biosensor separating the ECL working electrode with an immobilized DNA probe. A gold electrode array on a plastic plate was assembled with a thru-hole array where oligonucleotide probes were immobilized in the side wall of thru-hole array. The fabricated ECL DNA biosensor was used to detect several pathogens using ECL technique. A good specificity of single point mutations for hepatitis disease was obtained by using the DAPI-intercalated Ru(bpy)(3)(2+) ECL.  相似文献   

17.
Electrochemiluminescence (ECL) has been widely applied in immunoassays because of low background, high sensitivity, and excellent spatiotemporal controllability. In order to meet the increasing demand for high efficiency and accuracy of immunoassays in complex conditions, considerable efforts have been devoted to ECL strategies with multiple-signal outputs. In this short review, we summarize the recent advances of ECL strategies based on multiple-signal outputs, which includes ratiometric ECL, ECL multiplex immunoassay (MIA), and ECL imaging. Their signal generation strategies and analysis applications for immunoassay are discussed in detail. Moreover, the challenges and prospects in this field from us are addressed.  相似文献   

18.
内毒素是造成内毒素血症、多器官功能衰竭的关键因子,对人体健康存在着严重的危害。发展高选择性、高灵敏度、快捷便携且不受现场限制的检测方法具有重要意义。生物传感器以其高效、灵敏、易于自动化和微型化等优点,在相关检测领域中显示出重要的研究价值和巨大的发展空间。本文简要介绍了近年来内毒素的常用检测方法,重点综述了光学生物传感器和电化学生物传感器在内毒素检测应用中的研究进展。对生物传感器在内毒素检测中面临的挑战及其发展趋势进行了讨论和展望。  相似文献   

19.
20.
Dual-signal amplification strategy for ultrasensitive electrochemiluminescence (ECL) multiplexed immunoassay on microfluidic paper-based analytical devices (μ-PADs) was demonstrated. This dual-signal amplification technique was achieved by employing graphene oxide-chitosan/gold nanoparticles (GCA) immunosensing platform and [4,4′-(2,5-dimethoxy-1,4-phenylene)bis(ethyne-2,1-diyl) dibenzoic acid] (P-acid) functionalized nanoporous silver (P-acid/NPS) signal amplification label. For further low-cost and disposable applications, battery-triggered constant-potential ECL (+1.0 V for P-acid label (vs. Ag/AgCl auxiliary electrode)) was applied on this paper-based immunodevice with the aid of a home-made voltage-tunable power device, allowing the traditional electrochemical workstation to be abandoned. We found that two tumor markers could be sequentially detected in the linear ranges of 0.003–20 and 0.001–10 ng mL−1 with the detection limits down to 1.0 and 0.8 pg mL−1, respectively, by simply reversing the connection mode on two working electrodes. The results exhibited excellent precision and high sensitivity of such immunoassay, and it also demonstrated that this battery-triggered ECL paper-based immunodevice could provide a rapid, simple and simultaneous multiplex immunoassay with high throughput, low-cost and low detection limits for point-of-care testing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号