首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B. Pan  K. Li  W. Tong 《Experimental Mechanics》2013,53(7):1277-1289
High-efficiency and high-accuracy deformation analysis using digital image correlation (DIC) has become increasingly important in recent years, considering the ongoing trend of using higher resolution digital cameras and common requirement of processing a large sequence of images recorded in a dynamic testing. In this work, to eliminate the redundant computations involved in conventional DIC method using forward additive matching strategy and classic Newton–Raphson (FA-NR) algorithm without sacrificing its sub-pixel registration accuracy, we proposed an equivalent but more efficient DIC method by combining inverse compositional matching strategy and Gauss-Newton (IC-GN) algorithm for fast, robust and accurate full-field displacement measurement. To this purpose, first, an efficient IC-GN algorithm, without the need of re-evaluating and inverting Hessian matrix in each iteration, is introduced to optimize the robust zero-mean normalized sum of squared difference (ZNSSD) criterion to determine the desired deformation parameters of each interrogated subset. Then, an improved reliability-guided displacement tracking strategy is employed to achieve further speed advantage by automatically providing accurate and complete initial guess of deformation for the IC-GN algorithm implemented on each calculation point. Finally, an easy-to-implement interpolation coefficient look-up table approach is employed to avoid the repeated calculation of bicubic interpolation at sub-pixel locations. With the above improvements, redundant calculations involved in various procedures (i.e. initial guess of deformation, sub-pixel displacement registration and sub-pixel intensity interpolation) of conventional DIC method are entirely eliminated. The registration accuracy and computational efficiency of the proposed DIC method are carefully tested using numerical experiments and real experimental images. Experimental results verify that the proposed DIC method using IC-GN algorithm and the existing DIC method using classic FA-NR algorithm generate similar results, but the former is about three to five times faster. The proposed reliability-guided IC-GN algorithm is expected to be a new standard full-field displacement tracking algorithm in DIC.  相似文献   

2.
Background

Digital Image Correlation (DIC) is widely used for remote and non-destructive structural health evaluation of infrastructure. Current DIC applications are limited to relatively small areas of structures and require the use of stationary stereo vision camera systems that are not easy to transfer and deploy in remote areas.

Objective

The enclosed work describes the development and validation of an Unmanned Aircraft System (UAS, commonly known as drone) with an onboard stereo-vision system capable of acquiring, storing and transmitting images for analysis to obtain full-field, three-dimensional displacement and strain measurements.

Methods

The UAS equipped with a StereoDIC system has been developed and tested in the lab. The drone system, named DroneDIC, autonomously hovers in front of a prestressed railroad tie under pressure and DIC data are collected. A stationary DIC system is used in parallel to collect data for the railroad tie. We compare the data to validate the readings from the DroneDIC system.

Results

We present the analysis of the results obtained by both systems. Our study shows that the results we obtain from the DroneDIC system are similar to the ones gathered from the stationary DIC system.

Conclusions

This work serves as a proof of concept for the successful integration of DIC and drone technologies into the DroneDIC system. DroneDIC combines the high accuracy inspection capabilities of traditional stationary DIC systems with the mobility offered by drone platforms. This is a major step towards autonomous DIC inspection in portions of a structure where access is difficult via conventional methods.

  相似文献   

3.
Experimental Mechanics - Background: Application of patterns to enable high-resolution Digital Image Correlation (DIC) at the small scale (μm/nm) is known to be very challenging as techniques...  相似文献   

4.
With the rapid spread in use of Digital Image Correlation (DIC) globally, it is important there be some standard methods of verifying and validating DIC codes. To this end, the DIC Challenge board was formed and is maintained under the auspices of the Society for Experimental Mechanics (SEM) and the international DIC society (iDICs). The goal of the DIC Board and the 2D–DIC Challenge is to supply a set of well-vetted sample images and a set of analysis guidelines for standardized reporting of 2D–DIC results from these sample images, as well as for comparing the inherent accuracy of different approaches and for providing users with a means of assessing their proper implementation. This document will outline the goals of the challenge, describe the image sets that are available, and give a comparison between 12 commercial and academic 2D–DIC codes using two of the challenge image sets.  相似文献   

5.
Being the two primary approaches for full-field kinematics measurements,both subset-based local digital image correlation(DIC) and finite element-based global DIC have been extensively studied.Nowadays,most commercial DIC systems employ local DIC algorithm because of its advantages of straight forward principle and higher efficiency.However,several researchers argue that global DIC can provide better displacement results due to the displacement continuity constraint among adjacent elements.As such,thoroughly examining the performance of these two different DIC methods seems to be highly necessary.Here,the random errors associated with local DIC and two global DIC methods are theoretically analyzed at first.Subsequently,based on the same algorithmic details and parameters during analyses of numerical and real experiments,the performance of the different DIC approaches is fairly compared.Theoretical and experimental results reveal that local DIC outperforms its global counterpart in terms of both displacement results and computational efficiency when element(subset) size is no less than 11 pixels.  相似文献   

6.
In many applications of digital image correlation (DIC), it is advantageous to have measurements at multiple scales. Because it is rare to have natural features that can be used for DIC at multiple magnifications, an appropriately multiscale DIC pattern is needed. This work develops a multiscale DIC pattern that (1) contains features appropriate for both high and low magnification, (2) does not need to know the location of high magnification a priori, and (3) does not require specialized DIC equipment beyond what is necessary to achieve the two magnifications. The pattern is developed based on an optimization framework that minimizes expected DIC error while constraining sub-regions of the pattern to biased average grayscale values. The inclusion of local grayscale biases in the pattern has the effect of introducing resolvable features at a length scale much larger than the speckles of which the pattern is composed. Numerical and physical experiments were performed to illustrate the functionality and utility of the designed patterns. Notable among the findings is the trade off between DIC accuracy at the two scales and how it is controlled by grayscale bias.  相似文献   

7.
数字图像相关方法的准确度与速度增强   总被引:3,自引:0,他引:3  
王朝阳 《实验力学》2011,26(5):632-638
数字图像相关方法已经成为近几年来最为广泛使用的实验力学方法之一.本文从算法的角度提出了增强该方法准确度与速度的几个技术.由于插值算法在数字图像相关方法测量中扮演着重要的角色,文中采用了几种基于B样条表示的递归插值算法来提高数字图像相关方法的分析准确度与计算速度.在实践中,三维的测量在许多数字图像相关方法的应用中成为主导...  相似文献   

8.
结合数字图像相关(Digital Image Correlation,DIC)方法与钻孔法,开发了残余应力快速测量系统。该系统可分为两部分:适用于现场测量的便携式机械系统与针对残余应力测量而改进的基于DIC算法的程序。在四点弯曲加载平台上对工件进行载荷释放前后的残余应力测量试验,通过与应变片测量结果进行对比,该残余应力测量系统的精度达到了应变片测量的同等精度。同时,该测量系统解决了传统应变片测量系统对心误差大、操作繁琐、效率低和测量结果稳定性差等问题,具有较高的工程应用价值。  相似文献   

9.
Blaysat  B.  Neggers  J.  Grédiac  M.  Sur  F. 《Experimental Mechanics》2020,60(3):393-407

Users of full-field measurement methods like Digital Image Correlation (DIC) often aim to perform measurements with the best trade-off between spatial resolution, bias and measurement resolution. Whenever two full-field methods are compared, it is essential that these criteria are taken into consideration. Recently a metrological efficiency indicator for full-field measurements has been proposed and discussed. This indicator combines measurement resolution and spatial resolution. It has been shown to be invariant to the subset size in the case of Local DIC. The goal of this article is to discuss a method, which determines both the spatial and the measurement resolutions for a given bias for two different DIC methods, in order to obtain the metrological efficiency indicator for each of these methods. The benefit of this indicator is that it does not depend on setting parameters such as the subset size, which are chosen by the user. As such, it can be considered as intrinsic to each technique, thus enabling fair comparison. Local DIC and triangular finite element based Global DIC will be the subject of this investigation. With this setting, their respective subset and triangular element sizes will be related to the spatial resolution of both methods for a given acceptable bias. By using the metrological efficiency indicator, the performance of the two methods will be compared and discussed to a new level of detail. Generally speaking, the indicator shows that the metrological performance of both methods is similar, confirming their popularity. However, it will be shown that, depending on the choice of what an acceptable bias is, one of the method may be preferred to another. The results show that for the specific DIC versions used in the study, for cases for which a significant bias is acceptable, Local DIC outperforms Global DIC, while the opposite is true in the case for which the bias requirements are more stringent. Finally, the quadratic versions of both DIC versions are shown to significantly outperform their respective linear versions.

  相似文献   

10.
The objective of this paper is to explore both grid method and Digital Image Correlation (DIC) technique for microscale and discontinuous displacement measurements, such as those associated with crack tips. First, the principle of the grid method is revisited. The grid method and DIC technique are then applied to computer generated images to calculate the displacement field around crack tips. Finally, the grid method is applied to actual experimental images of fracture tests which are conducted inside a Scanning Electron Microscope (SEM) chamber. A new technique is developed to generate microscale pattern that is suitable for both grid method and DIC technique. The displacement fields calculated from grid method are compared with those from DIC technique to identify the strengths and weaknesses of each technique for the microscale and discontinuous displacement measurements. It has been determined that grid method can obtain data closer to the discontinuity than DIC; however, DIC produces smoother displacement fields at the far field. Using this new pattern generation technique, both grid method and DIC technique can be applied to the fracture test at the microscale to complement with each other to achieve the best experiment results.  相似文献   

11.
Digital image correlation (DIC) is a widely used optical metrology for surface deformation measurement. In DIC, the square root of the mean square error (RMS error) and standard deviation error (SD error) are used as quantitative criteria in order to evaluate the accuracy and robustness of a DIC method\algorithm. However, RMS and SD error criteria are computed from prescribed and measured displacements, which indicates that the prescribed displacement fields must be precisely generated. Therefore, it is difficult to quantitatively evaluate the accuracy and robustness of an algorithm\method in practical DIC measurements because imposed displacements are unknown (that’s why DIC measurements are needed). Moreover, the accuracy of DIC measurements highly relies on parameters selection, especially the selections of subset size and shape function. In practice, the subset size and shape function are usually selected according to experience because there are numerous factors (e.g. the quality of speckle image, local displacement field) and uncertainties (e.g. noise level, out-of-plane motion, illumination lighting fluctuation during image capturing) that affect the parameters selection, which makes it difficult to select optimal parameters based on previous works which mainly focused on theoretical deduction in ideal condition. In this paper, an error criterion for evaluating the accuracy of practical DIC measurements with unknown displacements is proposed. Numerical experiments are used to validate the effectiveness and feasibility of the proposed criterion for accuracy evaluation. It is concluded that the square root of the sum of squared forward and backward displacements difference (SFBD) error has a significant positive linear correlation with the widely used SD error in most practical DIC measurements where the mismatch between the frequently-used first- and second-order shape functions and the actual field is usually small. Also, an application of the proposed criterion is presented by real experiments for subset size and shape function selections, which verifies that the proposed error criterion can be effectively used for DIC parameters selection.  相似文献   

12.
Yu  L.  Pan  B. 《Experimental Mechanics》2021,61(7):1121-1142
Background

Developments in digital image correlation (DIC) in the last decade have made it a practical and effective optical technique for displacement and strain measurement at high temperatures.

Objective

This overview aims to review the research progress, summarize the experience and provide valuable references for the high-temperature deformation measurement using DIC.

Methods

We comprehensively summarize challenges and recent advances in high-temperature DIC techniques.

Results

Fundamental principles of high-temperature DIC and various approaches to generate thermal environment or apply thermal loading are briefly introduced first. Then, the three primary challenges presented in performing high-temperature DIC measurements, i.e., 1). image saturation caused by intensified thermal radiation of heated sample and surrounding heating elements, 2) image contrast reduction due to surface oxidation of the heated sample and speckle pattern debonding, and 3) image distortion due to heat haze between the sample and the heating source, and corresponding countermeasures (i.e., the suppression of thermal radiation, fabrication of high-temperature speckle pattern and mitigation of heat haze) are discussed in detail. Next, typical applications of high-temperature DIC at various spatial scales are briefly described. Finally, remaining unsolved problems and future goals in high-temperature deformation measurements using DIC are also provided. 

Conclusions

We expect this review can guide to build a suitable DIC system for kinematic field measurements at high temperatures and solve the challenging problems that may be encountered during real tests.

  相似文献   

13.
A comparative study has been carried out to assess the accuracy of the Digital Image Correlation (DIC) technique for the quantification of large strains in the microstructure of an Interstitial Free (IF) steel used in automotive applications. A microgrid technique has been used in this study in order to validate independently the strain measurements obtained with DIC. Microgrids with a pitch of 5 microns were printed on the etched microstructure of the IF steel to measure the local in-plane strain distribution during a tensile test carried out in a Scanning Electron Microscope (SEM). The progressive deformation of the microstructure with microgrids has been recorded throughout the test as a sequence of micrographs and subsequently processed using DIC to quantify the distribution of local strain values. Strain maps obtained with the two techniques have been compared in order to assess the accuracy of the DIC measurements obtained using the natural patterns of the revealed microstructure in the SEM micrographs. The results obtained with the two techniques are qualitatively similar and thus, demonstrate the reliability of DIC applied to microstructures, even after large deformations in excess of 0.7. However, an average error of about 16?% was found in the strain values calculated using DIC.  相似文献   

14.
Refractory castables exhibit very low fracture strain levels when subjected to tension or bending. The main objective of this work is to show that 3-D digital image correlation (3-D DIC) allows such low strain levels to be measured. Compared to mechanical extensometer measurements, 3-D DIC makes it possible to reach similar strain resolution levels and to avoid the problem of position dependance related to the heterogeneous nature of the strain and to strain localization phenomena. First, the 3-D DIC method and the experimental set-up are presented. Secondly, an analysis of the 3-D DIC method is performed in order to evaluate the resolution, the standard uncertainty and the spatial resolution for both displacement and strain measurements. An optimized compromise between strain spatial resolution and standard uncertainty is reached for the configuration of the experimental bending test. Finally, the macroscopic mechanical behavior of a fiber reinforced refractory castable (FRRC) is studied using mechanical extensometry and 3-D DIC in the case of tensile and four-point bending tests. It is shown that similar results are obtained with both methods. Furthermore, in the case of bending tests on damaged castable, 3-D DIC results demonstrate the ability to determine Young’s modulus from heterogeneous strain fields better than by using classical beam deflection measurements.  相似文献   

15.
《Comptes Rendus Mecanique》2019,347(11):762-779
The work introduces new advanced numerical tools for data assimilation in structural mechanics. Considering the general Bayesian inference context, the proposed approach performs real-time and robust sequential updating of selected parameters of a numerical model from noisy measurements, so that accurate predictions on outputs of interest can be made from the numerical simulator. The approach leans on the joint use of Transport Map sampling and PGD model reduction into the Bayesian framework. In addition, a procedure for the dynamical and data-based correction of model bias during the sequential Bayesian inference is set up, and a procedure based on sensitivity analysis is proposed for the selection of the most relevant data among a large set of data, as encountered for instance with full-field measurements coming from digital image/volume correlation (DIC/DVC) technologies. The performance of the overall numerical strategy is illustrated on a specific example addressing structural integrity on damageable concrete structures, and dealing with the prediction of crack propagation from a damage model and DIC experimental data.  相似文献   

16.
Digital image correlation (DIC) is a surface deformation measurement technique for which accuracy and precision are sensitive to image quality. This work presents cross polarization, the use of orthogonal linear polarizers on light source(s) and camera(s), as an effective method for improving optical DIC measurements. The benefits of cross polarization are characterized through quantitative and statistical comparisons from two experiments: rigid body translation of a flat sample and uniaxial tension of a superelastic shape-memory alloy (SMA). In both experiments, cross polarization eliminated saturated pixels that degrade DIC measurements, and increased image contrast, which enabled higher spatial precision by using smaller subsets. Subset sizes are usually optimized for correlation confidence interval (typically with subsets of 21×21 px or larger), but can be decreased to achieve the highest possible spatial precision at the expense of increased correlation confidence intervals. Smaller subset sizes (such as 9×9 px) require better images to maintain correlation within error thresholds. By comparing DIC results from a uniaxial SMA tension test with unpolarized and cross-polarized images, we show that for 9×9 px subsets, the loss of valid DIC data points was reduced almost ten-fold with cross polarization. The only disadvantage we see to cross polarization is the decrease in specimen illumination due to transmission losses through the polarizers, which can easily be accommodated with sufficiently intense light sources. With the installation of relatively inexpensive linear polarizing filters, an optimum optical DIC setup can provide even better DIC measurements by delivering images without saturated pixels and with higher contrast for increased DIC spatial precision.  相似文献   

17.
“Heat waves” is a colloquial term used to describe convective currents in air formed when different objects in an area are at different temperatures. In the context of Digital Image Correlation (DIC) and other optical-based image processing techniques, imaging an object of interest through heat waves can significantly distort the apparent location and shape of the object. There are many potential heat sources in DIC experiments, including but not limited to lights, cameras, hot ovens, and sunlight, yet error caused by heat waves is often overlooked. This paper first briefly presents three practical situations in which heat waves contributed significant error to DIC measurements to motivate the investigation of heat waves in more detail. Then the theoretical background of how light is refracted through heat waves is presented, and the effects of heat waves on displacements and strains computed from DIC are characterized in detail. Finally, different filtering methods are investigated to reduce the displacement and strain errors caused by imaging through heat waves. The overarching conclusions from this work are that errors caused by heat waves are significantly higher than typical noise floors for DIC measurements, and that the errors are difficult to filter because the temporal and spatial frequencies of the errors are in the same range as those of typical signals of interest. Therefore, eliminating or mitigating the effects of heat sources in a DIC experiment is the best solution to minimizing errors caused by heat waves.  相似文献   

18.
As a carrier of deformation information, the speckle pattern, or more exactly the random intensity distributions, which could be naturally occurred or artificially fabricated onto test samples’ surface, plays an indispensable role in digital image correlation (DIC). It is now well recognized that the accuracy and precision in DIC measurements not only rely on correlation algorithms, but also depend highly on the quality of the speckle pattern. Considering the huge diversity in test materials, spatial scales and experimental conditions, speckle pattern fabrication could be a challenging issue facing DIC practitioners. To obtain good speckle patterns suitable for DIC measurements, some key issues of fabrication methods and quality assessment of speckle patterns must be well addressed. To this end, this review systematically presents the speckle pattern classification and fabrication techniques for various samples and scales, as well as some typical quality assessment metrics.  相似文献   

19.
Reu  P. L.  Blaysat  B.  Andó  E.  Bhattacharya  K.  Couture  C.  Couty  V.  Deb  D.  Fayad  S. S.  Iadicola  M. A.  Jaminion  S.  Klein  M.  Landauer  A. K.  Lava  P.  Liu  M.  Luan  L. K.  Olufsen  S. N.  Réthoré  J  Roubin  E.  Seidl  D. T.  Siebert  T.  Stamati  O.  Toussaint  E.  Turner  D.  Vemulapati  C. S. R.  Weikert  T.  Witz  J. F.  Witzel  O.  Yang  J. 《Experimental Mechanics》2022,62(4):639-654
Experimental Mechanics - The DIC Challenge 2.0 follows on from the work accomplished in the first Digital Image Correlation (DIC) Challenge Reu et al. (Experimental Mechanics 58(7):1067, 1). The...  相似文献   

20.
Digital image correlation (DIC) is a full field three dimensional measurement technique that can quantify displacements and strains of a surface. In this paper, digital image correlation is used as a slip measurement technique during coupon scale fretting fatigue experiments. Slip measured with the novel DIC technique is compared to conventional slip measurement techniques as clip gauges and modified clip gauge measurements proposed by Wittkowsky et al. Slip measurements with the DIC system show lower slip values and higher tangential contact stiffness’s compared to (modified) clip gauge measurements. Slip measured with DIC is obtained closer to the contact compared to clip gauges, eliminating the influence of elastic deformations or fitting parameters. During the fretting fatigue experiments are two equal contacts simultaneously tested. However, the slip of both contacts is not identical with outliers of more than 10% difference in slip amplitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号