首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of recombinant human interferon-gamma (IFN) with egg phosphatidylcholine liposomes was studied. IFN which binds to liposomes was dependent on the liposomal charge and pH, and a preferential binding was observed in negatively charged liposomes at pH 7.4-10. Electron-microscopic observation showed that the increased liposomal turbidity induced by IFN was due to liposomal aggregation, and the increased turbidity could be decreased by the addition of NaCl. Thus, ionic binding may participate in this interaction. But, when the incubation time was longer, the liposomal aggregation was not decreased by the addition of NaCl, and the leakage of the entrapped marker, calcein, was observed. Electron-microscopic analysis showed that this leakage resulted from the morphological change of liposomes. From these findings, ionic binding may participate in the interaction between IFN and liposomes and then develop a morphological change in negatively charged liposomes under the neutral pH condition.  相似文献   

2.
The partition of hemoglobin, lysozyme and glucose-6-phosphate dehydrogenase (G6PDH) in a novel inexpensive aqueous two-phase system (ATPS) composed by poly(ethylene glycol) (PEG) and sodium polyacrylate (NaPA) has been studied. The effect of NaCl and Na(2)SO(4), pH and PEG molecular size on the partitioning has been studied. At high pH (above 9), hemoglobin partitions strongly to the PEG-phase. Although some precipitation of hemoglobin occurs, high recovery values are obtained particularly for lysozyme and G6PDH. The partitioning forces are dominated by the hydrophobic and electrochemical (salt) effects, since the positively charged lysozyme and negatively charged G6PDH partitions to the non-charged PEG and the strongly negatively charged polyacrylate enriched phase, respectively.  相似文献   

3.
Lysozyme is a globular protein which is known to bind to negatively charged phospholipid vesicles. In order to study the relationship between charge state of the protein and its interaction with negatively charged phospholipid membranes chemical modifications of the proteins were carried out. Succinylation and carbodiimide modification was used to shift the isoelectric point of lysozyme to lower and higher pH values, respectively. The binding of the modified lysozyme to phospholipid vesicles prepared from phosphatidic acid (PA) was determined using microelectrophoresis and ultracentrifugation. At acidic pH of the solution all lysozyme species reduced the surface charges of PA vesicles. Succinylated lysozyme (succ lysozyme) reduced the electrophoretic mobility (EPM) to nearly zero, whereas native lysozyme and carboxylated lysozyme (carbo lysozyme) changed the surface charge to positive values. At neutral pH, the reduction of surface charges was less for carbo lysozyme and unmodified lysozyme. Succ lysozyme did not change the EPM. Unmodified and carbo lysozyme decreased the magnitude of EPM, but the whole complex was still negatively charged. The bound fraction of all modified lysozyme to PA vesicles at high lysozyme/PA ratios was nearly constant at acidic pH. At low lysozyme/PA ratios the extent of bound lysozyme is changed in the order carbo>unmodified>succ lysozyme. Increasing the pH, the extent of bound lysozyme to PA large unilamellar vesicles (LUV) is reduced, at pH 9.0 only 35% of carbo lysozyme, 23% of unmodified lysozyme is bound, whereas succ lysozyme does not bind at pH 7.4 and 9.0. At low pH, addition of all lysozyme species resulted in a massive aggregation of PA liposomes, at neutral pH aggregation occurs at much higher lysozyme/PA ratios. Lysozyme binding to PA vesicles is accompanied by the penetration of lysozyme into the phospholipid membrane as measured by monolayer techniques. The penetration of lysozyme into the monolayer was modulated by pH and ionic strengths. The interaction of lysozyme with negatively charged vesicles leads to a decrease of the phospholipid vesicle surface hydration as measured by the shift of the maximum of the fluorescence signal of a headgroup labeled phospholipid. The binding of bis-ANS as an additional indicator for the change of surface hydrophobicity is increased at low pH after addition of lysozyme to the vesicles. More hydrophobic patches of the lysozyme-PA complex are exposed at low pH. At low pH the binding process of lysozyme to PA vesicles is followed by an extensive intermixing of phospholipids between the aggregated vesicles, accompanied by a massive leakage of the vesicle aqueous content. The extent of lysozyme interaction with PA LUV at neutral and acidic pH is in the order carbo lysozyme>lysozyme>succ lysozyme.  相似文献   

4.
The phase behavior of a thermoseparating cationic hydrophobically modified ethylene oxide polymer (HM-EO) containing tertiary amines has been investigated at different pH, salt and sodium dodecyl sulfate (SDS) concentrations, in order to find a water/HM-EO two-phase system suitable for protein partitioning. The used polymer forms micellar aggregates that can be charged. By changing pH and SDS concentrations the netcharge of the SDS/HM-EO aggregate can be shifted from positive to negative. Bovine serum albumin (BSA) and lysozyme were partitioned in the thermoseparated two-phase systems of the cationic polymer at different pH, salt and SDS concentrations. The dominant attractive interactions between the polymer aggregates and the studied proteins were shown to be of electrostatic (Coulomb) nature rather than hydrophobic interaction. At low ionic strength the positively charged polymeric aggregates attracted negatively charged BSA and repelled positively charged lysozyme. Upon addition of SDS the negatively charged aggregates attracted lysozyme and repelled BSA. Thus, it was possible to direct proteins with different charges to the polymeric phase and redirect them to a polymer-depleted phase by changing the netcharge of the polymeric aggregates. The effect of different salts on the partitioning of BSA in a system of slightly positively charged HM-EO was studied. NaCl and KBr have a significant effect on driving the BSA to the polymer-depleted phase, whereas KF and K2SO4 have a smaller effect on the partitioning. The cloud point temperature of the charged polymer decreased upon addition of SDS near the isoelectric molar ratio of SDS to polymer and also upon salt addition. In the latter case the decrease was smaller than expected from model calculations based on Flory-Huggins theory, which were performed for a charged thermoseparating polymer at different charges and salt concentrations.  相似文献   

5.
Dynamic binding capacities and resolution of PEGylated lysozyme derivatives with varying molecular weights of poly (ethylene) glycol (PEG) with 5 kDa, 10 kDa and 30 kDa for HIC resins and columns are presented. To find the optimal range for the operating conditions, solubility studies were performed by high-throughput analyses in a 96-well plate format, and optimal salt concentrations and pH values were determined. The solubility of PEG-proteins was strongly influenced by the length of the PEG moiety. Large differences in the solubilities of PEGylated lysozymes in two different salts, ammonium sulfate and sodium chloride were found. Solubility of PEGylated lysozyme derivatives in ammonium sulfate decreases with increased length of attached PEG chains. In sodium chloride all PEGylated lysozyme derivatives are fully soluble in a concentration range between 0.1 mg protein/ml and 10 mg protein/ml. The binding capacities for PEGylated lysozyme to HIC resins are dependent on the salt type and molecular weight of the PEG polymer. In both salt solutions, ammonium sulfate and sodium chloride, the highest binding capacity of the resin was found for 5 kDa PEGylated lysozyme. For both native lysozyme and 30 kDa mono-PEGylated lysozyme the binding capacities were lower. In separation experiments on a TSKgel Butyl-NPR hydrophobic-interaction column with ammonium sulfate as mobile phase, the elution order was: native lysozyme, 5 kDa mono-PEGylated lysozyme and oligo-PEGylated lysozyme. This elution order was found to be reversed when sodium chloride was used. Furthermore, the resolution of the three mono-PEGylated forms was not possible with this column and ammonium sulfate as mobile phase. In 4 M sodium chloride a resolution of all PEGylated lysozyme forms was achieved. A tentative explanation for these phenomena can be the increased solvation of the PEG polymers in sodium chloride which changes the usual attractive hydrophobic forces in ammonium sulfate to more repulsive hydration forces in this hydrotrophic salt.  相似文献   

6.
An essential part of the modulation of protein‐binding capacity in hydrophobic interaction chromatography is the buffer‐salt system. Besides using “single” electrolytes, multicomponent electrolyte mixtures may be used as an additional tool. Both the protein solubility and the binding capacity depend on the position of a salt in the so‐called Hofmeister series. Specific interactions are observed for an individual protein‐salt combination. For salt mixtures, selectivity, recovery, and binding capacity do not behave like for the single salts that are positioned in between the two mixed components in the Hofmeister series, as the continuous correlation would suggest. Thus, finding strategies for mixed salts could potentially lead to improved capacities in hydrophobic interaction chromatography. Mixtures of ammonium sulfate, sodium citrate, sodium sulfate, sodium chloride, sodium acetate, and glycine were used to investigate the binding capacities for lysozyme and a monoclonal antibody on various hydrophobic resins. Resin capacity for two investigated proteins increases when mixtures consisting of a chaotropic and a kosmotropic salt are applied. It seems to be related to the rather basic isoelectric points of the proteins.  相似文献   

7.
Isothermal titration calorimetry (ITC) was used to detect phytate binding to the protein lysozyme. This binding interaction was driven by electrostatic interaction between the positively charged protein and negatively charged phytate. When two phytate molecules bind to the protein, the charge on the protein is neutralised and no further binding occurs. The stoichiometry of binding provided evidence of phytate–lysozyme complex formation that was temperature dependent, being most extensive at lower temperatures. The initial stage of phytate binding to lysozyme was less exothermic than later injections and had a stoichiometry of 0.5 at 313 K, which was interpreted as phytate crosslinking two lysozyme molecules with corresponding water displacement. ITC could make a valuable in vitro assay to understanding binding interactions and complex formation that normally occur in the stomach of monogastric animals and the relevance of drinking water temperature on the extent of phytate–protein interaction. Interpretation of ITC data in terms of cooperativity is also discussed.  相似文献   

8.
Abstract

We suggest that the growth of molecular aggregates is the rate-controlling step in the crystallization of lysozyme from pH buffered aqueous solutions of strong electrolytes. We propose that the aggregation reaction passes through a charged transition state whose rate of formation is accelerated by Debye-Huckel screening and whose charge is stabilized by ion exchange with the solution. Applying the theory of the “primary kinetic salt effect”, we predict that the half-life for decay of the lysozyme concentration in solution in contact with a growing crystal should decrease linearly with the square root of the ionic strength. This prediction is confirmed experimentally in the case of lysozyme crystals precipitating at 4°C from pH buffered aqueous solutions of sodium chloride.  相似文献   

9.
ζ-potential measurements on LUVs allow to evidence the influence of pH, ionic salt concentration, and polyelectrolyte charge on the interaction between polyelectrolyte (chitosan and hyaluronan) and zwitterionic lipid membrane. First, chitosan adsorption is studied: adsorption is independent on the chitosan molecular weight and corresponds to a maximum degree of decoration of 40% in surface coverage. From the dependence with pH and independence with MW, it is concluded that electrostatic interactions are responsible of chitosan adsorption which occurs flat on the external surface of the liposomes. The vesicles become positively charged in the presence of around two repeat units of chitosan added per lipid accessible polar head in acid medium down to pH = 7.2. Direct optical microscopy observations of GUVs shows a stabilization of the composite liposomes under different external stresses (pH and salt shocks) which confirms the strong electrostatic interaction between the chitosan and the lipid membrane. It is also demonstrated that the liposomes are stabilized by chitosan adsorption in a very wide range of pH (2.0 < pH < 12.0). Then, hyaluronan (HA), a negatively charged polyelectrolyte, is added to vesicles; the vesicles turn rapidly negatively charged in presence of adsorbed HA Finally, we demonstrated that hyaluronan adsorbs on positively charged chitosan-decorated liposomes at pH < 7.0 leading to charge inversion in the liposome decorated by the chitosan-hyaluronan bilayer. Our results demonstrate the adsorption of positive and/or negative polyelectrolyte at the surface of lipidic vesicles as well as their role on vesicle stabilization and charge control.  相似文献   

10.
Several kinds of liposomes were sterilized at 121 degrees C for 20 min. They tended to aggregate after heat sterilization (HS) in saline, while no aggregation was observed in an isotonized sugar or polyol solution. The dispersions containing egg phosphatidylcholine (EggPC) with a high peroxide value (POV) turned slightly yellowish after HS. This color change was prevented by using EggPC with a low POV, hydrogenated EggPC (H-EggPC) or dipalmitoylphosphatidylcholine (DPPC). Nitrogen gas bubbling at neutral pH also prevented the color change, but vitamin E did not. The particle size of the EggPC liposomes extruded through a 0.4 micron membrane filter did not change significantly after HS, whereas the H-EggPC or DPPC liposomes extruded through a 0.8 micron membrane filter tended to be reduced in size. On this change the type of medium had a considerable influence. The anionic 6-carboxyfluorescein leaked from the negatively charged liposomes (EggPC/cholesterol (Chol)/egg phosphatidylglycerol) during HS, while no leakage was observed from the positively charged liposomes (EggPC/Chol/stearylamine) not only during HS but also during a long period of storage. It was suggested that sterilization of liposomes by heating was practicable as well as that by filtration, if the liposomes were prepared as follows: the charged liposomes made of lipids with low POV's were dispersed in a sugar or polyol solution adjusted to nearly pH 6.5, where the amount of dissolved oxygen was minimized. An ionic water-soluble drug had to be encapsulated in the oppositely charged liposomes.  相似文献   

11.
The energetics of lysozyme adsorption on aminopropyl-grafted MCF silica (MCF-NH2) are compared to the trends observed during lysozyme adsorption on native MCF silica using flow microcalorimetry (FMC). Surface modification on MCF silica affects adsorption energetics significantly. All thermograms consist of two initial exothermic peaks and one later endothermic peak, but the heat signal trends of MCF-NH2 are opposite from those observed for adsorption onto native MCF silica in salt solutions of sodium acetate and sodium sulfate. At low ionic strength (0.01 M), LYS adsorption onto MCF-NH2 was accompanied by a large exotherm followed by a desorption endotherm. With increasing ionic strength (0.1 and 3.01 M), the magnitude of the thermal signal decreased and the total process became less exothermic. Also a higher protein loading of 14 μmol g(-1) was obtained at low ionic strength in batch adsorption isotherm measurements. Taken together, the FMC thermograms and batch adsorption isotherms reveal that MCF-NH2 has the nature of an ion exchange adsorbent, even though lysozyme and the aminopropyl ligands have like net charges at the adsorption pH. Reduced electrostatic interaction, reduced Debye length, and increased adsorption-site competition attenuate exothermicity at higher ionic strengths. Thermograms from flow microcalorimetry (FMC) give rich insight into the mechanisms of protein adsorption. A two-step adsorption mechanism is proposed in which negatively charged surface amino acid side chains on the lysozyme surface make an initial attachment to surface aminopropyl ligands by electrostatic interaction (low ionic strength) or van der Waals interaction (high ionic strength). Secondary attachments take place between protruding amino acid side chains and silanol groups on the silica surface. The reduced secondary adsorption heat is attributed to the inhibitory effect of the enhanced steric barrier of aminopropyl group on MCF silica.  相似文献   

12.
Summary The retention behaviour of seven globular proteins ranging in molecular weight from 12,000 to 69,000 was investigated using Mono-Q anion-exchange resin as the stationary phase and sodium chloride as the displacer salt. In particular the influence of changes in ionic strength and mobile phase pH on the isocratic retention properties was assessed. Several proteins were found to have significant retention when the pH of the mobile phase was below the reported pl values of the proteins. This behaviour results from the non-uniform charge distribution on the protein surface, which allows interaction with the charged stationary phase even though the protein net charge is equal to or greater than zero. The influence of pH and ionic strength on experimentally observed bandwidths was also investigated. The dependence of the effective reduced plate height on solute capacity factor was found to vary significantly with the mobile phase pH, a behaviour consistent with the interplay of complex multisite binding kinetics. These results provide a basis for further detailed investigations into the mechanism of interaction of proteins not only with charged surfaces associated with adsorptive chromatographic media but also with other macromolecules. For Part LXXXII, see ref. [27].  相似文献   

13.
Experiments on the kinetics of heteroaggregation between oppositely charged particles, using both dynamic light scattering and turbidity methods, are reported. The negatively charged particles were cross-linked poly( [Formula: see text] -isopropylacrylamide) [PNIPAM] microgel particles, prepared using a carboxylic-acid-based initiator; these particles are swollen at room temperature. The positive particles were poly(4-vinylpyridine) [P4VP] particles, prepared using an amidinium-based initiator; such particles do not respond to temperature changes but do swell below pH approximately 4, where the pyridine moieties become protonated. As expected, the rate of heteroaggregation was shown to be largely independent of added salt concentration (up to approximately 20 mM), for a variety of alkali metal chlorides (MCl, where M = Li, Na, K, or Rb). However, an unexpected, significant decrease in the aggregation rate was observed at certain specific sodium chloride concentrations (typically at approximately 1 and also approximately 4 mM). Similar effects were not seen with the other alkali metal chloride salts. This strange effect was eventually attributed to the fact that the net charge on the positively charged P4VP particles had been reduced by the adsorption of (anionic) silicate species leached from the glassware container. Sodium silicates are known to be significantly more soluble than those of the other alkali metal ions, particularly at high pH. Moreover, P4VP particles dispersed in water, ostensibly at neutral pH, do buffer the aqueous medium to pH values around 9 or higher. This mechanism was confirmed by determining the electrophoretic mobility of the P4VP particles as a function of pH in the presence of the various alkali metal chloride salts. The mobility remained positive in 1 mM salt solutions over the pH range 3 to 11 for all the salts, except for sodium chloride; in that case the mobility reversed sign at alkaline pH values. A similar effect was observed for a cationic polystyrene latex sample, prepared with the same amidinium-based initiator. These experiments demonstrate the importance of soluble silicates, leached from glass storage vessels, particularly in the presence of sodium ions. Needless to say, the "anomalous" effects disappeared when plastic storage vessels were used in place of the glass ones.  相似文献   

14.
Novel composite polypyrrole/chondroitin-4-sulphate films with cation-exchange properties were synthesized by the electrochemical polymerization of pyrrole in the presence of chondroitin-4-sulphate (CSA) sodium salt, acting as dopant anion at neutral pH. The negatively charged biomolecule was found to be permanently entrapped in the polypyrrole (PPy) membrane which resulted, as expected, facilitated in the mass transport by mobile cationic counterions. The porous nature of the substrates was identified as the most influential factor controlling the morphology. The morphology, in turn, affects the interaction between the material surface and the tissues on a cellular level. In this work in vitro analyses of human fibroblast response to polypyrrole/chondroitin-4-sulphate films were performed to focus on the different steps of cell reactions towards defined surface properties.  相似文献   

15.
The binding mechanism of poly(diallyldimethylammonium chloride), PDAC, and sodium dodecyl sulfate, SDS, has been comprehensively studied by combining binding isotherms data with microcalorimetry, zeta potential, and conductivity measurements, as well as ab initio quantum mechanical calculations. The obtained results demonstrate that surfactant-polymer interaction is governed by both electrostatic and hydrophobic interactions, and is cooperative in the presence of salt. This binding results in the formation of nanoparticles, which are positively or negatively charged depending on the molar ratio of surfactant to PDAC monomeric units. From microcalorimetry data it was concluded that the exothermic character of the interaction diminishes with the increase in the surfactant/polymer ratio as well as with an increase in electrolyte concentration.  相似文献   

16.
The pH dependence in hydrophobic interaction chromatography (HIC) is usually discussed exclusively in terms of protein dependence and there are no clear defined trends. Many of the deviations from an ideal solution are caused solely by the high salt concentration, as protein concentration is usually negligible. So pH dependency in hydrophobic interaction chromatography could also be the result of pH dependent changes of ion properties from the salt solution. The possibility that pH dependent ion hydration or ion association in highly concentrated salt solutions may influence the dynamic protein binding capacity onto HIC resins was investigated. In buffer solutions commonly used in HIC e.g. sodium chloride, ammonium sulphate and sodium citrate pH dependent maxima in the electro-acoustic signals were found. These maxima are related to an increase of the ion sizes by hydration or ion association. At low ionic strength the maxima are in the range between 4.5 and 6 and they increased in concentrated electrolyte solutions to values between 6 and 8. The range of these maxima is in the same region as dynamic protein binding capacity maxima often observed in HIC. For a qualitative interpretation of this phenomenon of increased protein stabilization by volume exclusion effect extended scaling theory can be used. This theory predicts a maximum of protein stabilization if the ratio of salt ion diameter to water is 1.8. According to the hypothesis raised here, if the pH dependent ratio of salt ion diameter to water approaches this value the transport of the protein in the pore system is less restricted and an increase in binding capacity can be produced.  相似文献   

17.
Nanoparticles taken into biological systems can have biological impacts through their interactions with cell membranes, accompanied by protein adsorption onto the nanoparticle surfaces, forming a so-called protein corona. Our current research aims to demonstrate that nanoscale protein aggregates behave like such nanoparticles with regard to the interaction with lipid membranes. In this study, the adsorption and disruption of the lipid membranes by protein aggregates were investigated using amyloid fibrils and nanoscale thermal aggregates of lysozyme. Both types of protein aggregates had disruptive effects on the negatively charged liposomes, similar to polycationic nanoparticles. Interestingly, adsorption of liposomes on the amyloid fibrils preceding disruption occurred even if the net charge of the liposome was zero, suggesting the importance of hydrophobic interactions in addition to electrostatic interactions. The results of the present study provide new insights into the biological impacts of nanoparticles in vivo.  相似文献   

18.
The interactions of the bile salts sodium cholate (NaC) and sodium deoxycholate (NaDC) in 0.1 M NaCl (pH 7.4) with membranes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG) and mixtures of DPPC and DPPG at molar ratios of 3:1 and 1:1 were studied by means of high-sensitivity isothermal titration calorimetry (ITC), dynamic light scattering (DLS), and differential scanning calorimetry (DSC). The partition coefficients and the transfer enthalpies for the incorporation of bile salt molecules into the phospholipid membranes were determined by ITC. The vesicle-to-micelle transition was investigated by ITC, DLS, and DSC. The phase boundaries for the saturation of the vesicles and their complete solubilization established by ITC were in general agreement with DLS data, but systematic differences could be seen due to the difference in detected physical quantities. Electrostatic repulsion effects between the negatively charged bile salt molecules and the negatively charged membrane surfaces are not limiting factors for the vesicle-to-micelle transition. The membrane packing constraints of the phospholipid molecules and the associated spontaneous curvature of the vesicles play the dominant role. DPPG vesicles are transformed by the bile salts into mixed micelles more easily or similarly compared to DPPC vesicles. The saturation of mixed DPPC/DPPG vesicles requires less bile salt, but to induce the solubilization of the liposomes, significantly higher amounts of bile salt are needed compared to the concentrations required for the solubilization of the pure phospholipid systems. The different solubilization behavior of DPPC/DPPG liposomes compared to the pure liposomes could be due to a specific "extraction" of DPPG into the mixed micelles in the coexistence region.  相似文献   

19.
Structure and dynamics of lysozyme encapsulated in a silica sol-gel matrix   总被引:1,自引:0,他引:1  
Proteins entrapped in sol-gel matrices have been extensively studied during the last 15 years, showing that most of them can be encapsulated with retention of their native structure and functionality and with enhanced stability. However, relatively little is known about the structural and dynamical details of the biomolecule-matrix interactions. To achieve this goal, the model protein hen egg white lysozyme (HEWL) has been entrapped in sol-gel matrices prepared from tetraethyl orthosilicate through an alcohol-free sol-gel route, and the photophysical properties of its fluorescent tryptophans have been determined using both steady-state and time-resolved fluorescence techniques. By combining fluorescence spectra, quenching experiments, lifetimes, and time-resolved fluorescence anisotropy measurements, we have obtained information on the structure, dynamics, and solvation properties of the entrapped protein. Our results show that the environment of HEWL within the silica pore as well as its internal dynamics is similar to that in aqueous solution, except that the protein showed no or, depending on conditions, very much slower global motion but retained its internal angularly restricted (hindered) segmental rotation upon entrapment. The experiments carried out at different experimental conditions indicate that, below the isoelectric point of the protein, a strong electrostatic interaction is established between the protein molecule and the negatively charged sol-gel walls, which is ultimately responsible for the total arrest of the overall rotation of the protein, but without significant effect upon its segmental rotational relaxation. The electrostatic nature of the interaction is clearly established since either reducing the positive charge of the protein (by increasing the pH toward its isoelectric point) or increasing the ionic strength of the solution (shielding against the attractive interaction) leads to a situation in which the protein freely rotates within the matrix pore, albeit an order of magnitude more slowly than that in free solution under similar macroscopic solution conditions, and still retains its segmental rotational properties.  相似文献   

20.
The effect of adsorption of bovine serum albumin (BSA) on the membrane characteristics of liposomes at pH 7.4 was examined in terms of zeta potential, micropolarity, microfluidity and permeability of liposomal bilayer membranes, where negatively charged L-alpha-dipalmitoylphosphatidylglycerol (DPPG)/L-alpha-dipalmitoylphosphatidylcholine (DPPC), negatively charged dicetylphosphate (DCP)/DPPC and positively charged stearylamine (SA)/DPPC mixed liposomes were used. BSA with negative charges adsorbed on negatively charged DPPG/DPPC mixed liposomes but did not adsorb on negatively charged DCP/DPPC and positively charged SA/DPPC mixed liposomes. Furthermore, the adsorption amount of BSA on the mixed DPPG/DPPC liposomes increased with increasing the mole fraction of DPPG in spite of a possible electrostatic repulsion between BSA and DPPG. Thus, the adsorption of BSA on liposomes was likely to be related to the hydrophobic interaction between BSA and liposomes. The microfluidity of liposomal bilayer membranes near the bilayer center decreased by the adsorption of BSA, while the permeability of liposomal bilayer membranes increased by the adsorption of BSA on liposomes. These results are considered to be due to that the adsorption of BSA brings about a phase separation in liposomes and that a temporary gap is consequently formed in the liposomal bilayer membranes, thereby the permeability of liposomal bilayer membranes increases by the adsorption of BSA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号