首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
<正>一、引言宇宙辐射电磁波谱的任何一个波段背后,都有天体的物理现象和机理,只要能感知到,就可以寻找它们的规律。20世纪30年代,美国贝尔实验室工程师卡尔央斯基在短波高频波段偶然收到来自地球之外的天体辐射,开启了射电天文的大门。自此,电磁波成为了天文学家观测天体辐射的核心手段之一。由于地球空间存在的比较浓密的电离层,能够反射短波和中波波段的人造电磁波,使得电磁  相似文献   

2.
陈学雷 《物理》2023,(5):297-308
宇宙黑暗时代是指宇宙大爆炸刚刚结束,第一代恒星和星系尚未形成的时期,这时的宇宙“鸿蒙未开”,蕴藏着宇宙起源阶段所遗留的大量宝贵信息。这一时期宇宙中性氢气体产生的21 cm信号为观测宇宙黑暗时代提供了探针,但这一信号现已红移到米波、十米波甚至百米波频段,在这一频段有其他天体特别是银河系产生的巨大前景辐射,在地球上的观测还受到地球电离层的吸收、折射以及多种电磁干扰,因此其观测具有极大的挑战性。利用月球背面或月球轨道进行观测具有优越的条件,可以避免电离层和电磁干扰对低频射电观测的影响。随着重返月球热潮的兴起,美国、欧洲、印度等国和中国都在积极酝酿月基天文特别是低频射电天文研究,打开低频电磁观测的新窗口,实现对宇宙黑暗时代和宇宙起源的探测。文章将介绍关于宇宙黑暗时代、宇宙黎明的研究进展以及利用月球开展低频射电天文观测的动向,并简要介绍中国提出的鸿蒙绕月卫星阵列计划。  相似文献   

3.
 1800年2月11日,英国天文学家威廉·赫谢尔在观测太阳光谱热效应时意外发现了肉眼不可见的红外辐射。此后,随着麦克斯韦电磁理论的建立,人们开始意识到,在可见光之外,还存在着其他波段的电磁波,它们的差别只在于频率或者说波长。现代的天文研究综合了这些不同波段的观测以获取信息。但是,地球大气对于观测不同频段的天体辐射却有很大影响。图1为地球大气对不同波段电磁辐射的吸收。我们看到,这其中有两个几乎完全透明的窗口,分别位于可见光波段和无线电波段(米波至厘米波)。我们的眼睛之所以对可见光敏感大概是长期进化的产物。现在,地面的天文观测也是以可见光和射电(无线电)天文观测为主,而其他波段特别是X射线、伽玛射线等高能天文观测,以及红外和毫米波观测,则往往依赖航天器的空间观测或火箭、气球等近邻空间观测手段,或者至少是利用高海拔观测站以尽量减少大气吸收。仅X射线波段,空间望远镜和实验就已有几十个。这些空间观测,打开了高能天文的观测窗口。  相似文献   

4.
 科学技术发展到今天已经使天文学家有可能去探测天体在整个电磁波谱中任何一个波段的辐射了。但是光学波段作为“传统”的波段,迄今仍然是研究天体物理的基础。其主要原因是宇宙中大量的物质以凝聚的、温度达数千度乃至数万度的恒星形式存在着。当然,这也包括了恒星集合的星系。它们的辐射主要集中于光学波段。所以,大口径的光学天文望远镜仍然是天文学研究的主要工具。对于天文学家来说望远镜的主要作用是收集光子。我们知道,收集天体光子的能力是和望远镜镜面的面积成正比的。假如某一类天体有相同的光度,那么我们能探测到这类天体的极限距离就和望远镜口径成正比(当然,这里我们忽略了天体之间存在的星际物质对光线吸收的影响)。而且,天文望远镜还将天体成像。其空间分辨率也将和望远镜口径成正比。  相似文献   

5.
<正>1.超长波及其早期观测历史1800年2月11日,英国天文学家威廉·赫谢尔在观测太阳光谱热效应时意外发现了肉眼不可见的红外辐射。此后,随着麦克斯韦电磁理论的建立,人们开始意识到,在可见光之外,还存在着其他波段的电磁波,它们的差别只在于频率或者说波长。现代的天文研究综合了这些不同波段的观测以获取信息。但是,地球大气对于观测不同频段的天体辐射却有很大影响。图1为地球大气对不同波  相似文献   

6.
<正>1引言射电(1)波段是除光学外另一个对大气透明的波段,为人类了解宇宙提供了重要的观测窗口。自20世纪30年代央斯基(K.Jansky)第一次接收到来自地球之外天体的射电辐射以来,射电天文技术取得了长足进步。20世纪60年代的四大天文发现——脉冲星、类星体、宇宙微波背景辐射、星际有机分子都与射电天文学紧密相关。已于2016年9月25日落成的我国自主建设的世界上最大的单天线射电望远镜——500 m口径球面射电望远镜(FAST)是射电天文技术发展史上又一里程碑。FAST覆盖70 MHz~3000 MHz频段,配备脉冲星、谱线和甚长基线干涉(VLBI)数字终端,可以开展脉冲  相似文献   

7.
 天体物理学是天文学与物理学的交叉学科,是20世纪自然科学发展的一个极其重要的分支。现代天体物理学的重要探测手段之一是借助射电技术设备接收并研究宇宙天体的辐射。这些辐射按波长可分为若干波段,如无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等。按观测的电磁波段可分为光学天文学、射电天文学和空间天文学等。  相似文献   

8.
 1609年意大利天文学家伽利略发明了第一架天文望远镜,300多年来,人们一直用光学望远镜在可见光波段观测天体,认识宇宙,本世纪30年代,美国无线电工程师K.央斯基偶然发现了来自银河中心的宇宙射电波,开辟了大气的另一扇“窗口”,即射电窗口,迅速发展的射电天文学与光学天文学交相辉映,使古老的天文学大放异彩。60年代,天文学家又打开了可见光与无线电波之间的波长在0.7-1000微米的红外窗口,进一步拓宽了天文学的观测领域,推动了天文学的更快发展。  相似文献   

9.
正天体物理学是天文学与物理学的交叉学科,是20世纪自然科学发展的一个极其重要的分支。现代天体物理学的重要探测手段之一是借助射电技术设备接收并研究宇宙天体的辐射。这些辐射按波长可分为若干波段,如无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等。按观测的电磁波段可分为光学天文学、射电天文学和空间天文学等。传统的观测是在  相似文献   

10.
 在地-月系统长期的演化过程中,地球和月球之间的潮汐力使月球的自转逐渐减缓,最终导致月球被地球潮汐锁定,使得月球总是同一面朝向地球,所以从地球上始终不能完全看见月球的另一面(仅有18%因天平动效应和视差而被观测),因此被称为月球背面。月球背面的第一张影像由前苏联的“月球3号”环月探测器在1959年10月拍摄,揭开了月球背面的神秘面纱,直到1968年12月的阿波罗8号任务环绕月球时,才直接用眼睛看见月球背面。2007年中国发射了嫦娥一号,获取了分辨率为120米的全月图,2010年发射的嫦娥二号,进一步获取了分辨率为7米的全月图。2010年12月,美国的“月球勘测轨道号”探测器拍摄了更多高分辨率的月球背面图像,让人们对月球背面有了进一步地了解。  相似文献   

11.
空间硬X射线调制望远镜   总被引:5,自引:0,他引:5  
用宇宙作为物理实验室,探索在地球上无法企及的条件下,例如极早期宇宙或黑洞视界附近强引力场中的物理规律,已成为新世纪物理学和天文学共同的前沿课题;空间天文观测是其中一个最重要的研究途径.自主研制和发放空间硬X射线调制望远镜(HXMT),实现中国空间天文卫星零的突破,是中国<"十一·五"空间科学发展规划>的目标之一.HXMT将实现宽波段X射线(1-250 keV)巡天,其中在硬X射线波段具有世界最高灵敏度和空间分辨率,发现大批被尘埃遮挡的超大质量黑洞和未知类型天体,探测宇宙硬X射线背景辐射;HXMT还将通过对黑洞和其他高能天体宽波段X射线时变和能谱的观测,研究致密天体极端物理条件下的动力学和辐射过程.基于成像技术创新提出HXMT项目迄今已有15年,能不能抓住技术创新所提供的科学机遇仍然是一个严重的挑战.  相似文献   

12.
一个了解宇宙的新窗口——分子天体物理学进展介绍   总被引:1,自引:0,他引:1  
 二次大战中发展起来的雷达及微波技术推动了微波波谱学及射电天文的发展.1944年荷兰的范德胡斯特首先考虑了用射电望远镜检测广泛存在于星云之中的氢原子21厘米微波谱线(它来自氢基态超精细结构能级间的跃迁)的可能性.这个想法在1951年实现.于是天文谱线的研究由光学波段扩展到射电波段.氢21厘米谱线的观测取得了丰硕成果并积累了用微波谱线观测星际气体的经验.天文学家认识到微波特别适合于研究低温的星云,这种星云不辐射可见光并且阻碍可见光透过,而微波谱线却能携带着星云深处的各种信息投向地球.  相似文献   

13.
长期以来,人类用以观测天体的波段,主要被限制在可见光辐射这一相当狭窄的频率范围之内.这一方面是由于设备和技术的不足,另一方面也由于人类长期居住在稠密的地球大气底层,而大气层仅对可见光等几段比较狭窄的电磁辐射透明的原故。这个情况在近十余年来开始有了很大的改变.由于射电天文等技术的发展,人造地球卫星探测设备的应用,人类终于逐步地冲破了大气透光性的限制,可以在从无线电波频起直到高能γ射线止的、宽达14个量级以上的电磁波以及其他辐射区域内,对天体进行观测;这就大大地扩展了探索宇宙天体的眼界,导致了许多重要的新发现,提…  相似文献   

14.
 20世纪初,随着人们对空气电离度测量精度的不断提高,大气电离现象被普遍观测到并被归因于放射性元素衰变产生的高能辐射。1911~1913年奥地利物理学家维克托·赫斯(Victor Franz Hess)通过一系列高空气球实验发现了来自外太空的可以导致空气电离的辐射--宇宙线,他也因此获得了来自于河外高能天体源。能量低于109eV (1GeV)的宇宙线由于受太阳风的影响,很难到达地球附近。由太阳活动产生的高能粒子的能量通常也低于1 GeV⑦,因此在地球附近观测到的能量低于1 GeV的高能粒子主要产生于太阳系。虽然银河系中很多高能天体都可以产生宇宙线,但是超新星遗迹被普遍认为是最主要的银河系宇宙线源。这就是所谓的银河系宇宙线的超新星遗迹起源学说。1936年的诺贝尔物理学奖(图1(a))。20世纪30年代,人们通过对来自地球东西方向宇宙线流量不对称性的分析,逐渐认识到它们主要是由带正电的高能粒子组成,受地球磁场影响,来自西方的宇宙线流量更高。后来的一系列研究表明,99%的宇宙线是原子核,其中约10%为α粒子即氦核,更重的原子核占1%左右。考虑到宇宙线的高流量,1934年巴德(W.Baade)和兹维基(F.Zwicky)指出,它们可能来自于超新星爆发。由于宇宙线粒子带电,在星际介质中传播时将受到星际磁场的影响,因此地球附近观测到的宇宙线空间分布几乎是各向同性的,这也导致我们无法通过对宇宙线的成像观测来确定宇宙线源。但是宇宙线可以和背景等离子体相互作用产生从射电到伽马射线的电磁辐射,随着射电天文、X射线天文、伽马射线天文的发展,人们不仅发现了超新星爆发产生宇宙线的观测证据,还发现了其他一些可以产生宇宙线的高能天体③~⑥。  相似文献   

15.
人类对宇宙最早的认识和观测始于可见光,之后由于有1865年麦克斯韦对电磁波的预言,1887年赫兹的证实,以及1933年杨斯基发现银河系的射电辐射,可见光观测自此扩展到电磁波多波段观测,出现了多波段天文学。1912年,赫斯发现宇宙线,使得天文观测在电磁波观测之外多了一种手段,拉开了多信使天文学的序幕。1987年,戴维斯和小柴昌俊发现了来自超新星爆发的中微子信号,这也是人类首次探测到了来自宇宙的中微子,至此又多了一种认识和观测宇宙的信使。此后,2016年美国激光干涉引力波观测站LIGO探测到引力波,在补齐对于验证爱因斯坦广义相对论的最后一块拼图的同时,也使得引力波成为多信使天文学中最新引入的一种信使。本文介绍了电磁波、宇宙线、中微子、引力波这四种信使的基本概念、发现历史以及探测宇宙的基本原理,对其代表性的实验进行了收集整理,并就其中的一个典型实验进行了简要介绍。期望能够就多波段多信使天文学的发展历程给出一个比较完整的描摹。  相似文献   

16.
 宇宙线的起源作为科学难题已经长达一个世纪。近年随着GeV、TeV伽马射线天文望远镜的发展,探测到了一批高能和甚高能伽马射线超新星遗迹(Supernovae Remnant,SNR),表明超新星遗迹的电磁辐射,不仅从低频射电波段跨越到X射线波段,而且延伸至伽马射线波段,是宇宙中重要的伽马射线源。频率跨度如此之大的电磁辐射,科学家们用以研究各种天文物理过程,如恒星晚期演化与核合成,激波动力学,相对论性粒子高能辐射,高能粒子加速、传播等等。特别是,超新星遗迹被普遍推测为银河系内主要的宇宙线加速源。为了确证对超新星遗迹或其他高能天体这样的推测,深入探索宇宙线的有关机理,必须建造下一代更灵敏的伽马射线望远镜,在更高的能段投入观测。超新星遗迹也因此成为LHAASO项目的重要探测目标。  相似文献   

17.
一、概 况 以人造卫星为标志的太空研究已经经历了十五年以上的历史.如果从探空火箭算起,太空研究的历史还可以追朔到本世纪四十年代.空间科学技术的迅速发展,给空间天文事业开辟了十分广阔的前景.空间天文当今作为天文学中一个独特领域,已经发展成为一门相当齐全的综合性学科.1.外空天文观测的优越性 首先,它能够在不同程度上越过地球大气这个屏障,开拓了天文观测波段,取得由外层空间进入地球的整个电磁谱的可能性.各类天体发射着波长从103厘米到1012厘米范围内的辐射.但是地面天文观测主要地局限在可见光区域内.由于大气中臭氧、氧、氮等…  相似文献   

18.
 用1994年发现撞击木星的彗星“苏梅克-列维9号”的美国科学家苏梅克的名字命名的近地小行星探测器“NEAR-苏梅克”号,在宇宙中飞行了5年后于今年2月12日在小行星“爱神”的表面成功着陆,开始了新的探索。第433号小行星“爱神”是1898年8月13日由德国天文学家古斯塔夫韦特发现并命名的。这颗形似马铃薯的“爱神”星长约33千米,厚13千米,在小行星中算是较大的,也是被天文学家观测得最多的。“爱神”的年龄约为45.4亿年,与地球的年龄相近,特别是在不久前的星际碰撞中,“爱神”星剥落了一块物质,并裸露出新鲜的“内部”,因此它被选定为这次探测的目标。  相似文献   

19.
 我国完全自主实施的探月工程又名嫦娥工程,是中国航天迈向深空探测零的突破。自2004年1月正式立项以来,我国先后成功发射了嫦娥一号、二号、三号、五号T1试验器和四号任务,实现了“五战五捷”,成为人类进入21世纪后月球探测活动的重要力量。深受世人瞩目的嫦娥四号任务实施了两次发射,2018年5月21日发射“鹊桥”号中继星;由“玉兔二号”巡视器和着陆器组成的嫦娥四号探测器于2018年12月8日从西昌卫星发射中心升空,2019年1月3日顺利在月球背面预选区着陆,由多个国家和国际组织参与的科学探测任务陆续展开。  相似文献   

20.
 月球和水星月亮是距离地球最近的天体,它的圆缺(称为月相)变化是原始人类最早注意的天象之一。早在公元前5世纪,古希腊哲学家阿那克萨戈拉斯(Anaxagoras)认为月亮是个象地球一样的星球。我国古代很早就产生了“嫦娥奔月”、“吴刚伐桂”等动人神话。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号