首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
《中国化学快报》2021,32(10):3113-3117
The research of borate materials as sodium-ion batteries (SIBs) anode is still in the early stages, but the boron polyoxoanions are attracting intense interest due to their low atomic weight and high electronegative features. In this work, FeBO3 was prepared with low-cost raw materials and evaluated as SIBs anode. The FeBO3 shows a high reversible capacity of 328 mAh/g at the current density of 0.4 A/g. In addition, the electrochemical performance of FeBO3 can be improved by carbon coating. The prepared carbon-coated FeBO3 composite has a reversible capacity of 426 mAh/g (at 0.4 A/g) and an outstanding rate capability of 272 mAh/g (at 1.6 A/g). Furthermore, the sodium storage mechanism of FeBO3 was studied by in-situ XRD and ex-situ XPS.  相似文献   

2.
The development of novel anode materials,with superior rate capability,is of utmost significance for the successful realization of sodium-ion batteries(SIBs).Herein,we present a nanocomposite of Nb_2 O_5 and reduced graphene oxide(rGO) by using hydrothermal-assisted microemulsion route.The water-in-oil microemulsion formed nanoreactors,which restrained the particle size of Nb_2 O_5 and shortened the diffusion length of ions.Moreover,the rGO network prevented agglomeration of Nb_2 O_5 nanoparticles and improved electronic conductivity.Consequently,Nb_2 O_5@rGO nanocomposite is employed as anode material in SIBs,delivering a capacity of 195 mAh/g after 200 charge/discharge cycles at 0.2 A/g.Moreover,owing to conductive rGO network,the Nb_2 O_5@rGO electrode rende red a specific capacity of 76 mAh/g at high current density of 10 A/g and maintained 98 mAh/g after 1000 charge/discharge cycles at 2 A/g.The Nb_2 O_5@rGO electrode material prepared by microemulsion method shows promising possibilities for application of SIBs.  相似文献   

3.
    
Metal selenides as anode materials for sodium-ion batteries have attracted considerable attention owing to their high theoretical specific capacities and variable composition and structures.However,the achievement of long cycle life and superior rate performance is challenging for these selenide materials due to the volume variation upon cycling.Herein,a composite composed of a new binary-metal selenide[Cu2SnSe3(CSS)]and carbon nanotubes(CNTs)was constructed via a hydrothermal process followed by calcination at 600℃.Benefited from the unique structure of binary-metal selenide and the conductive network of CNTs,the Cu2SnSe3/carbon nanotubes(CSS/CNT)composite exhibits excellent electrochemical performance when used as an anode material for sodium-ion batteries.A reversible specific capacity of 399 mA·h/g can be maintained at a current density of 100 mA/g even after 100 cycles.This work provides a promising strategy for rational design of binary-metal selenides upon delicate crystal phase control as electrode materials.  相似文献   

4.
    
Sodium-ion batteries are promising energy-storage systems, but they are facing huge challenges for developing fast-charging anode materials. Bismuth (Bi)-based anode materials are considered as candidates for fast-charging anodes of sodium-ion batteries due to their excellent rate performance. Herein, we designed a two-dimensional Bi/MXene anode material based on a hydrogen thermal reduction strategy. Benefitting from microstructure advantages, Bi/MXene anodes exhibited an excellent rate capability and superior cycle performance in Na//Bi/MXene half-batteries and Na3V2(PO4)3/C//Bi/MXene full-batteries. Moreover, full-batteries can complete a charge/discharge cycle in 7 min and maintain an excellent cycle life (over 7000 cycles). The electrochemical test results showed that Bi/MXene is a promising anode material with fast charge/discharge capability for sodium-ion batteries.  相似文献   

5.
    
SnS/CNTs composite as anode for SIBs exhibits high reversible capacity, good cyclability as well as rate performance, which is superior to that of pure SnS. The enhanced electrochemical performance can be attributed to the adding of CNTs as a flexible and conductive structure supporter and the formation of SnS nanoparticles with small diameter.  相似文献   

6.
    
MnS as anode material for sodium-ion batteries(SIBs)has recently attracted great attention because of the high theoretical capacity,great natural abundance,and low cost.However,it suffers from inferior electrical conductivity and large volume expansion during the charge/discharge process,leading to tremendous damage of electrodes and subsequently fast capacity fading.To mitigate these issues,herein,a three-dimensional(3D)interlaced carbon nanotubes(CNTs)threaded into or between MnS hollow microspheres(hollow MnS/CNTs composite)has been designed and synthesized as an enhanced anode material.It can effectively improve the electrical conductivity,buffer the volume change,and maintain the integrity of the electrode during the charging and discharging process based on the synergistic interaction and the integrative structure.Therefore,when evaluated as anode for SIBs,the hollow MnS/CNTs electrode displays enhanced reve rsible capacity(275 mAh/g at 100 mA/g after 100 cycles),which is much better than that of pure MnS electrode(25 mAh/g at 100 mA/g after 100 cycles)prepared without the addition of CNTs.Even increasing the current density to 500 mA/g,the hollow MnS/CNTs electrode still delivers a five times higher reversible capacity than that of the pure MnS electrode.The rate performance of the hollow MnS/CNTs electrode is also superior to that of pure MnS electrode at various current densities from 50 mA/g to 1000 mA/g.  相似文献   

7.
由于能源危机与环境问题,全球能源的消耗正逐渐从传统化石能源转向其它清洁高效能源。高效清洁能源的存储是电动汽车和智能电网的关键技术,对新能源、新材料和新能源汽车国家战略新兴产业的发展具有重要意义。锂离子电池是目前广泛应用的一种能源存储器件。电动汽车和智能电网对能量密度、功率密度、循环寿命和成本等方面的要求越来越高,传统的锂离子电池面临巨大挑战,发展下一代能源存储技术迫在眉睫。高能量密度的锂硫电池和锂空气电池,低成本、高安全性的室温钠离子电池受到了越来越多的关注。本文简要总结了近年来锂硫电池、锂空气电池和钠离子电池及其关键电极材料的研究进展,并对这些新型能源存储技术存在的问题和未来的前景做出了分析和展望。  相似文献   

8.
金属氧化物可通过电化学转换反应与锂离子及钠离子发生多电子可逆结构转换,是一类极具应用前景的高容量锂离子和钠离子电池负极材料。实验以氧化石墨烯和铁盐为前驱体,采用简单的溶剂法,成功将Fe2O3纳米单晶粒子均匀负载于石墨烯的导电片层上,获得Fe2O3/rGO(还原氧化石墨烯)纳米复合材料。复合电极在锂离子和钠离子电池中都表现出优异的充放电性能和循环稳定性。实验结果表明石墨烯的包覆不仅能降低Fe2O3发生转换反应的电荷传递阻抗,而且能够稳定电极在循环过程中带来的结构转变,极大改善电极大电流充放能力和循环稳定性。本研究为发展高容量的锂离子和钠离子电池负极材料提供了可行的途径。  相似文献   

9.
采用喷雾热解法合成了碳包覆的SnSb/C合金复合材料,利用X射线粉末衍射仪(XRD)、场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)等方法对产物的物相和形貌进行了表征,其中SnSb/C颗粒为10 nm左右的复合材料(10-SnSb/C)作为钠离子电池负极时,表现出优异的循环和倍率性能。首圈放电达到722.1m Ah·g~(-1),首圈库仑效率86.3%,在100、1000、3000 m A·g~(-1)下比容量分别为607.7、645.4、452.2 m Ah·g~(-1),在1000 m A·g~(-1)电流下循环200周后可逆容量达到623 m Ah·g~(-1),容量保持率为95%。SnSb/C复合材料出色的储钠性能源于其完全被碳包裹的纳米结构,该结构可以有效提高活性物质的利用率,促进电子、离子的传导,并且抑制纳米粒子在长循环过程中的粉化和团聚。  相似文献   

10.
Metal selenides are promising anodes for sodium-ion batteries (SIBs) due to the high theoretical capacity through conversion reaction mechanism. However, developing metal selenides with superior electrochemical sodium-ion storage performance is still a great challenge. In this work, a novel composite material of free-standing NiSe2 nanoparticles encapsulated in N-doped TiN/carbon composite nanofibers with carbon nanotubes (CNTs) in-situ grown on the surface (NiSe2@N-TCF/CNTs) is prepared by electrospinning and pyrolysis technique. In this composite materials, NiSe2 nanoparticles on the surface of carbon nanofibers were encapsulated into CNTs, thus avoiding aggregation. The in-situ grown CNTs not only improve the conductivity but also act as a buffer to accommodate the volume expansion. TiN inside the nanofibers further enhances the conductivity and structural stability of carbon-based nanofibers. When directly used as anode for SIBs, the NiSe2@N-TCF/CNT electrode delivered a reversible capacity of 392.1 mAh/g after 1000 cycles and still maintained 334.4 mAh/g even at a high rate of 2 A/g. The excellent sodium-ion storage performance can be attributed to the fast Na+ diffusion and transfer rate and the pseudocapacitance dominated charge storage mechanism, as is evidenced by kinetic analysis. The work provides a novel approach to the fabrication of high-performance anode materials for other batteries.  相似文献   

11.
With the advent of the post–lithium-ion era, sodium- and potassium-based energy storage devices are intensively focused in the recent years. The novel sodium- and potassium-ion hybrid capacitors couple with the merits of supercapacitors and secondary batteries and thus are widely explored. A typical hybrid capacitor is generally constructed by combining a battery-type anode and a capacitive-type cathode, which presents both high energy density and power features. The design and fabrication of anode materials with high rate capability and long life to match the capacitive cathode is a critical issue. In this short review, the newly developed anode materials in nonaqueous capacitors are systematically analyzed. Based on a comprehensive summarization, the challenges for further practical applications of anode materials are prospected.  相似文献   

12.
通过共沉淀以及后续的气相硫化成功制备了横向边长约为2μm,纵向厚度约为30 nm的NiCo_2S_4六角片,并研究了其作为钠离子电池负极材料的电化学性能。电化学性能测试结果显示在1000 mA·g~(-1)的电流密度下,NiCo_2S_4电极循环60次后仍然可保持约387mAh·g~(-1)的可逆比容量。此外,NiCo_2S_4电极还具有良好的倍率性能,在200、400、800、1000和2000mA·g~(-1)的电流密度下,容量分别为542、398、347、300和217mAh·g~(-1)。通过进一步动力学机制分析发现,NiCo_2S_4电极的良好的倍率性能得益于其二维片层状结构诱导产生的赝电容。上述结果表明,NiCo_2S_4纳米六角片是一种极具潜力的钠离子电池负极材料。  相似文献   

13.
钠离子电池是目前新兴的低成本储能技术,因在大规模电化学储能中具有较好的应用前景而受到了国内外学者广泛的关注与研究。作为钠离子电池的关键电极材料之一,非石墨的炭质材料因具有储钠活性高、成本低廉、无毒无害等诸多优点,而被认为是钠离子电池实际应用时负极的最佳选择。本文详细综述了目前钠离子电池炭基负极材料的研究进展,重点介绍了炭质材料的储钠机理与特性,分析了炭材料结构与电化学性能之间的关系,探讨了其存在的问题,为钠离子电池炭基负极材料的发展提供有益的认识。  相似文献   

14.
钠离子电池具有钠资源储量丰富、成本低以及安全系数高等优点,在大规模储能、新能源汽车和柔性/可穿戴电子领域中显示出巨大的潜力。然而,钠离子较大的离子半径会造成电极电化学反应动力学缓慢、材料体积变化大等问题,因此开发有利于钠离子嵌入/脱出、稳定性强和容量高的电极材料至关重要。相比于传统的粉末涂覆电极,无粘结剂的三维阵列电极在形成连续的电子传输通道、促进电解液渗透和缩短离子扩散路径等方面更具优势。本文综述了单质、过渡金属氧化物、硫化物、磷化物和钛酸盐等阵列负极材料在钠离子电池中的最新研究进展。重点介绍了各类阵列负极的制备方法、结构/形貌特点和储钠性能,最后对钠离子电池阵列化电极未来的机遇和挑战进行了展望。  相似文献   

15.
实现钠离子电池等储能设备的大规模应用对于能源的可持续发展以及完成“碳达峰碳中和”目标具有重要意义.开发高性能的负极材料可提升钠离子电池的能量密度和循环稳定性,是实现钠离子电池大规模应用的关键性因素.中空碳材料因其独特的结构而具有优异的倍率性能与循环稳定性,作为钠离子负极材料具有广阔的应用前景.本文从多角度出发,综合评述了中空碳材料的合成方法,以及其形貌、杂原子修饰策略与储钠性能之间的关系,并对其未来发展方向进行了展望.  相似文献   

16.
    
A high purity sheet-like Na2Ti3O7 material was synthesized by a new facile solid-state method with hollow sphere TiO2 as titanium source. X-Ray diffraction(XRD) measurement proves that no impurity phase existed when the sample was heated at 900 ℃. Charge/discharge measurement was performed in a potential range of 0.01-2.5 V at different current-rates(C-rates). The initial charge/discharge capacities are 191/424 mA·h/g at 0.1 C and still remain as high as 101 mA·h/g after 50 cycles. CV test proves that the large irreversible capacity in the initial cycle results from the formation of the solid electrolyte interface(SEI). However, the electrode presents an increased initial coulombic efficiency in a 1 mol/L NaPF6 electrolyte compared to that in a 1 mol/L NaClO4 electrolyte.  相似文献   

17.
Constructing a stable and robust solid electrolyte interphase (SEI) is crucial for achieving dendrite-free sodium metal anodes and high-performance sodium batteries. However, maintaining the integrity of SEI during prolonged cycle life under high current densities poses a significant challenge. In this study, we propose an integrated multifunctional SEI layer with inorganic/organic hybrid construction (IOHL−Na) to enhance the durability of sodium metal anode during reduplicative plating/stripping processes. The inorganic components with high mechanical strength and strong sodiophilicity demonstrate optimized ionic conduction efficiency and dendrite inhibition ability. Simultaneously, the organic component contributes to the formation of a dense and elastic membrane structure, preventing fracture and delamination issues during volume fluctuations. The symmetrical batteries of IOHL−Na achieve stable cycling over 2000 hours with an extremely low voltage hysteresis of around 15.8 mV at a high current density of 4 mA cm−2. Moreover, the Na−O2 batteries sustain exceptional long-term stability and impressive capacity retention, exploiting a promising approach for constructing durable SEI and dendrite-free sodium metal anodes.  相似文献   

18.
    
The application of transition metal dichalcogenides(TMDs)as anode materials in sodium-ion batteries(SIBs) has been hindered by low conductivity and poor cyclability.Herein,we report the synthesis of CoxFe1-xS2 bimetallic sulfide/sulfur-doped Ti3C2 MXene nanocomposites(CoxFe1-xS2@S-Ti3C2)by a facile co-precipitation process and thermal-sulfurization reaction.The interconnected 3D frameworks consisting of MXene nanosheets can effectively buffer the volume change and enhance the charge transfer.In particular,sulfur-doped MXene nanosheets provide rich active sites for sodium storage and restrain sulfur loss during charging/discharging processes,leading the increase of specific capacity and cycling the stability of anode materials.As a result,CoxFe1-xS2@S-Ti3C2 anodes exhibited high capacity,high rate capability and long cycle life(399mA·h/g at 5A/g with an 94% capacity retention after 600 cycles).  相似文献   

19.
    
MoS2 with a large interlayer spacing of 6.24 Å (1 Å=0.1 nm) and a high theoretical capacity of 678 mA·h·g‒1 is recognized as a potential electrode candidate for sodium-ion batteries. However, its agglomeration tendency and volume change upon the charge/discharge cycling lead to fast capacity decay and poor cyclic stability. In this work, a hierarchical Ti3C2/TiO2/MoS2 composite was prepared to improve the electrochemical performance of MoS2. Ti3C2Tx MXene was used as a conductive agent and mechanical support, while zero-strain TiO2 generated through the in-situ oxidization of Ti3C2Tx MXene was utilized as a structural stabilizer. Compared with Ti3C2/TiO2, Ti3C2, and MoS2, the Ti3C2/TiO2/MoS2 composite exhibited excellent electrochemical performance: a high specific capacity of 413.6 mA·h·g‒1 was retained after charge/discharge at 0.1 A/g for 100 cycles and a high rate capacity of 302.2 mA·h·g‒1 was achieved at 8.0 A/g as an anode material for sodium-ion batteries. Therefore, this work sheds light on the development of MoS2-based materials for anodes of sodium-ion batteries.  相似文献   

20.
    
As two-dimensional (2D) materials, bismuth (Bi) has large interlayer spacing along c-axis (0.395 nm) which provides rich active sites for sodium ions, thus guaranteeing high sodium ion storage activity. However, its poor electrical conductivity, combined with its degraded cycling performance, restricts its practical application. Herein, Bi microsphere coated with nitrogen-doped carbon (Bi@NC) was synthesized. Owing to the unique Bi crystals and nitrogen-doped carbon layer, the obtained Bi@NC anode exhibited satisfactory cycling stability and superior rate capability. Moreover, after assembling Bi@NC anode with Na3V2(PO4)3@C cathode to full battery, excellent sodium storage performance was obtained (57 mA h g−1 after 2000 cycles at 1.0 A g−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号