首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《中国化学快报》2019,30(12):2039-2042
Responsive polymers have been playing an increasingly important role in a wide variety of applications,such as biomedical materials and biosensors.Herein,we reported a dual-responsive polycarbonate(poly(MN-co-MSS)) based on the macrocyclic Sulfur/Nitrogen-substituted carbonate monomer(MSS/MN) via an enzyme-catalyzed ring-opening copolymerization and Lipase CA Novozym-435 as catalyst,with the disulfide and tertiary amine groups situated on the backbone.The structure of the random copolymers was confirmed by NMR and FTIR.In addition,size exclusion chromatography(SEC) results indicated that the copolymer had a symmetric peak and a relatively narrow polydispersity.Also,the random copolymers can self-assemble into micelle-like aggregates in water due to the hydrophilicity endowed by the amino groups,and the aggregates exhibited rich pH and GSH responsive behavior,which was verified by zeta masters instrument and dynamic light scattering(DLS).Moreover,transmission electron microscopy(TEM) demonstrated the morphology of the micellar aggregates and the variation subjected to the lower pH and GSH,and the responsive mechanism was elaborated.Therefore,these results highlighted a facile synthesis of the environment-responsive polymers and provided a novel GSH/pH responsive material platform for further application.  相似文献   

2.
以引发剂量的壳聚糖 (CS)为母体骨架,通过与丙烯酰胺 (AM)和丙烯酸 (AA)连续的自由基聚合反应,制备了一种全亲水丙烯酰胺/丙烯酸类梳型聚合物 (CS-PAM/PAA).聚合物中丙烯酰胺和丙烯酸的组成比例可通过控制反应时间调节,并可通过核磁共振碳谱定量计算.该聚合物具有全亲水嵌段共聚物的特性,在水溶液中具有良好的pH响应性和离子响应性.聚合物溶于水并在酸性条件下自组装形成囊泡结构的聚集体,多价金属离子(如Tb3+离子)也可以引起聚合物的响应聚集.  相似文献   

3.
For the precision synthesis of primary amino functional polymers, cationic polymerization of a phthalimide‐containing vinyl ether monomer precursor, 2‐vinyloxyethyl phthalimide (PIVE), was examined using a base‐assisting initiating system. Living polymerization of PIVE in CH2Cl2 in the presence of 1,4‐dioxane as an added base yielded nearly monodispersed polymers (Mw/Mn < 1.1) and higher molecular weight polymers, which have never been obtained using other initiating systems. Furthermore, block copolymers with hydrophobic or hydrophilic groups could be prepared. The deprotection of the pendant phthalimide groups gave well‐defined pH‐responsive polymers with pendant primary amino groups. Dual‐stimuli–responsive block copolymers having a pH‐responsive polyamine segment and a thermosensitive segment self‐assembled in water in response to both pH and temperature. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1207–1213, 2010  相似文献   

4.
We report on a new doubly responsive polymeric system of amphiphilic diblock copolymers, namely poly(di-[ethylene glycol] methyl ether methacrylate)-b-poly(2-[diisopropylamino] ethyl methacrylate), PDEGMA-b-PDIPAEMA, obtained by the reversible addition-fragmentation chain transfer (RAFT) polymerization technique. Molecular characterization by size exclusion chromatography (SEC), nuclearmagnetic resonance (1H-NMR) and infrared spectroscopy (FT-IR) confirms the successful synthesis of these novel block copolymers. The PDEGMA-b-PDIPAEMA block copolymers formed aggregates in aqueous media in response to solution pH and temperature changes, as evidenced by dynamic and static light scattering techniques, as well as fluorescence spectroscopy. Aggregates with PDEGMA core and PDIPAEMA corona domains are formed at elevated temperatures and low pH, whereas aggregates with PDIPAEMA cores and PDEGMA coronas are formed at neutral and high pH. Overall structural characteristics and solution behavior of the copolymers are affected by the copolymer composition. The obtained results provide valuable new information on the behavior and design guidelines for the construction of stimuli responsive, “schizophrenic” polymeric nanostructures with potential application in the biomedical field.  相似文献   

5.
We have been designing and synthesizing synthetic polymers that mimic viral fusogenic peptides, which contain peptide residues having alkyl groups and carboxyl groups. We have synthesized two different types of such polymers, and their abilities to hemolyse red blood cells at pH 7.4 and 5.5 are compared here. The polymers are poly(2‐alkylacrylic acid)s such as poly(2‐propylacrylic acid), and random copolymers of poly(alkyl acrylate‐co‐acrylic acid) where the alkyl group is propyl or butyl. We have found that the poly(2‐alkylacrylic acid)s such as poly(2‐propylacrylic acid) are significantly more hemolytic at acidic pH than the random copolymers of equivalent propyl and carboxyl contents.  相似文献   

6.
Block copolymers of poly(glycidol)‐b‐poly(4‐vinylpyridine) were obtained by ATRP of 4‐vinylpyridine initiated by ω‐(2‐chloropropionyl) poly(glycidol) macroinitiators. By changing the monomer/macroinitiator ratio in the synthesis polymers with varied P4VP/PGl molar ratio were obtained. The obtained block copolymers showed pH sensitive solubility. It was found that the linkage of a hydrophilic poly(glycidol) block to a P4VP influenced the pKa value of P4VP. DLS measurements showed the formation of fully collapsed aggregates exceeding pH 4.7. Above this pH values the collapsed P4VP core of the aggregates was stabilized by a surrounding hydrophilic poly(glycidol) corona. The size of the aggregates depended significantly upon the composition of the block copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1782–1794, 2009  相似文献   

7.
pH‐sensitive polymers can be defined as polyelectrolytes that include in their structure weak acidic or basic groups that either accept or release protons in response to a change in the environmental pH. This work summarizes the design, synthesis, and potential applications of pH‐responsive fluorescent copolymers in the biomedical field. This was achieved using atom transfer radical polymerization (ATRP) of tert‐butyl acrylate using a CuBr/N,N,N′,N″N″‐pentamethyldiethylenetriamine catalyst system in conjunction with an alkyl bromide as the initiator. Well‐defined macroinitiators based on poly(tert‐butyl acrylate) with narrow molecular weight distributions were obtained by the addition of an appropriate solvent system in order to create a homogeneous catalytic system. The addition of n‐butyl acrylate as a second building block in order to create well‐defined poly(tert‐butyl acrylate)‐b‐poly(n‐butyl acrylate) block copolymers (PtBA‐b‐PnBA) followed by chemical modification of the block copolymers and functionalization with an appropriate fluorescent compound are the basis for the preparation of well‐defined fluorescent pH‐sensitive micelles. Thus, prepared water soluble nanosized pH‐sensitive micelles consisting of hydrophobic poly(n‐butyl acrylate) core and hydrophilic polyacrylic acid shell decorated with an appropriate fluorescent compound determined their potential applications of these systems in the field of biomedicine as biosensors, controlled drug delivery systems, and so on. In this respect, the cell viability and internalization of the polymer micelles were studied.  相似文献   

8.
The synthesis and self‐assembly properties in aqueous solutions of novel amphiphilic block copolymers composed of one hydrophilic, pH and temperature responsive poly(dimethyl amino ethyl methacrylate) (PDMAEMA) block and one weakly hydrophobic, water insoluble, potentially thermoresponsive poly(hydroxy propyl methacrylate) (PHPMA) block, are reported. The block copolymers were prepared by RAFT polymerization and were molecularly characterized by size exclusion chromatography, NMR, and FTIR spectroscopies. The PDMAEMA‐b‐PHPMA amphiphilic block copolymers self‐assemble in different nanostructured aggregates when inserted in aqueous media. The effects of different solubilization protocols, as well as the effects of solution temperature and pH on the structure of the aggregates, are studied by light scattering and fluorescence spectroscopy measurements. Experimental results indicate that there is a number of solution preparation and physicochemical parameters that allow the control and manipulation of the structure and thermoresponsive properties of PDMAEMA‐b‐PHPMA aggregates in aqueous media. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1962–1977  相似文献   

9.
《化学:亚洲杂志》2018,13(18):2723-2729
In this research, a series of random and block amphiphilic copolymers of norbornene derivatives containing biocompatible natural triterpenoid and oligo(ethylene glycol) pendants were synthesized by ring‐opening metathesis polymerization. These copolymers were heat and pH responsive, and could self‐assemble into core–shell spherical micelles in aqueous solution. Their hydrodynamic diameters corresponded to pH values and monomer sequences. By evaluating the loading and release capacity of hydrophobic molecules, it was found that 1) the higher the content of the hydrophobic triterpenoid, the higher the loading capacity; 2) the release speed could be trigged by the pH because of the deprotonation of the carboxyl groups on the triterpenoid. Additionally, the copolymers exhibited low cytotoxicity toward L929 cells, which makes them potential nanocarrier candidates for controlled drug delivery.  相似文献   

10.
The effect of up to 7.82 mol % ionic groups on the stress relaxation and dynamic mechanical (torsion pendulum) properties of poly(styrene-co-sodium styrene-p-carboxylate) was studied. The results obtained were compared with those reported elsewhere for polymers containing the same ionic groups at a different position on the polystyrene backbone (styrene-sodium methacrylate copolymers) and with polymers containing different ionic groups at the same position (styrene-sodium styrene-p-sulfonate copolymers). The results of these comparisons showed that positioning of ionic groups affects the size of ionic aggregates formed, while their type dictates the strength of the forces within the aggegrates.  相似文献   

11.
魏渊  郑成  毛桃嫣  林璟  凌慧 《化学通报》2017,80(10):925-934
近年来具有环境响应性的嵌段共聚物的研发受到了人们的广泛关注。该类型共聚物可以对外界环境刺激产生相应的结构、物理及化学性能的变化。根据外界环境刺激响应机理及类型的不同,可将其分为单一因素、双重因素以及三重因素刺激响应性嵌段共聚物三大类。针对每一类体系,本文重点综述了嵌段共聚物的设计合成、自组装以及应用等研究现状,并概括总结了各种有序聚集体(如胶束、囊泡等)随外界环境刺激(如pH、温度、光、CO_2、氧化还原剂等)所作出的响应性变化。最后,对智能型嵌段共聚物在药物控释、纳米容器制备、生物功能材料等方面潜在的应用价值和今后可能的发展方向进行了展望。  相似文献   

12.
In this study, three kinds of amphiphilic block copolymers, termed MPEG-block-PDMMA, MPEG-block-PCPMA, and MPEG-block-PMPMA, which were composed of one hydrophilic monomethoxy poly(ethylene glycol) (MPEG) block and one hydrophobic polyacrylate block bearing pendant six-member cyclic ketal groups, were synthesized by atom transfer radical polymerization (ATRP). These polymers can disperse in aqueous media to self-assemble into micellar aggregates with a spherical core-shell structure with mean diameter below 300 nm. The stimuli-responsiveness of polymeric micelles from MPEG-block-PDMMA was detected by fluorescence-probe technique at pH 3.5 and 37 °C. The effect of chemical architecture and composition of the polymers on the pH-responsive properties of polymeric micelles was also studied. A combination of pH and temperature to trigger release behavior of these polymeric micelles was discussed by comparing the encapsulated molecule release ability under various pH and temperature conditions and analyzing chemical structural changes of the polymer before and after the triggering.  相似文献   

13.
To mimic the three-dimensional (3-D) globular architecture resulting from the precise positioning of hydrophobic/hydrophilic domains (blocks) of naturally occurring proteins, water-soluble linear and star homopolymers of N,N'-dimethylacrylamide (DMA) were synthesized with prescribed molecular weights via reversible addition-fragmentation chain transfer (RAFT) polymerization and subsequently used as macro chain transfer agents for block copolymerization with N-isopropylacrylamide (NIPAM). For the star block copolymers, the interior block consisted of NIPAM while the exterior block was DMA. Since polyNIPAM thermally switches from hydrophilic to hydrophobic, the 3-D solution conformations of the polymers were studied as a function of temperature using differential scanning calorimetry (DSC), static light scattering (SLS), and dynamic light scattering (DLS). The polymers were observed to form monodisperse aggregates in an aqueous pH 4 buffer solution when heated above the lower critical solution temperature (LCST) of polyNIPAM. The temperature at which the polymers aggregated and the size of the aggregates were dependent on the NIPAM block length and the core architecture. A simple model based on an optimal area per headgroup was used to analyze our experimental findings and was useful for predicting the final size and molecular weight of the aggregates formed.  相似文献   

14.
pH‐responsive methoxy poly(ethylene glycol)‐b‐poly(ε‐caprolactone) bearing pendant carboxyl groups mPEG‐b‐P(2‐CCL‐co‐6‐CCL) was synthesized based on our newly monomer benzyloxycarbonylmethly functionalized ε‐caprolactone. Their structure was confirmed by 1H NMR, 13C NMR, and Fourier transform infrared spectrum spectra. In addition, SEC results indicated that the copolymers had a relatively narrow polydispersity. WXRD and DSC demonstrated that the introduction of carboxymethyl groups had significant effect on the crystallinity of the copolymers. Furthermore, the solution behavior of mPEG‐b‐P(2‐CCL‐co‐6‐CCL) has been studied by various methods. The results indicated that mPEG‐b‐P(2‐CCL‐co‐6‐CCL) had a rich pH‐responsive behavior and the micelles could be formed by pH induction, and the mPEG‐b‐P(2‐CCL‐co‐6‐CCL) could existed as unimers, micelles or large aggregates in different pH range accordingly. The mechanism of which was supposed to depend on the counteraction between the hydrophobic interaction from PCL and the ionization of the carboxyl groups along the polymer chain. Moreover, the mPEG‐b‐P(2‐CCL‐co‐6‐CCL) copolymers displayed good biocompatibility according to the preliminary cytotoxicity study. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 188–199  相似文献   

15.
A detailed study of the pH‐ and sugar‐responsive behavior of poly(3‐acrylamidophenylboronic acid pinacol ester)‐b‐poly(N,N‐dimethylacrylamide) (PAPBAE‐b‐PDMA) block copolymers is presented. Reversible addition‐fragmentation chain transfer (RAFT) polymerization of the pinacol ester of 3‐acrylamidophenylboronic acid resulted in homopolymers with molecular weights between 12,000 and 37,000 g/mol. The resulting homopolymers were employed as macro‐chain transfer agents during the polymerization of N,N‐dimethylacrylamide (DMA). Successful chain extension and removal of the pinacol protecting groups to yield poly(3‐acrylamidophenylboronic acid)‐b‐PDMA (PAPBA‐b‐PDMA) with free boronic acid moieties resulted in pH‐ and sugar‐responsive block copolymers that were subsequently investigated for their behavior in aqueous solution. The PAPBA‐b‐PDMA block copolymers were capable of solution self‐assembly due to the PAPBA block being water‐insoluble below its pKa. The resulting aggregates were demonstrated to solubilize and release model hydrophobic compounds, as demonstrated by fluorescence studies. Dissociation of the aggregates was induced by raising the pH above the pKa of the boronic acid residues or by adding sugars capable of forming boronate esters. Aggregate size, dissociation kinetics, and the effect of various sugars were considered. The critical sugar concentration needed to induce aggregate dissociation was tuned by incorporation of hydrophilic DMA units within the PAPBA responsive segment to yield PDMA‐b‐poly(3‐acrylamidophenylboronic acid‐co‐DMA) block copolymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
The poly(amidoamine)s (PAAs) ISA 1 and ISA 23 display pH-dependent conformational change and pH-dependent membrane perturbation. These properties confer potential for use as endosomolytic polymers for intracytoplasmic delivery of toxins and genes. Both polymers are relatively non-toxic, and moreover ISA 23 has the beneficial property in vivo, of being non hepatotropic when administered intravenously. Although ISA 23 and ISA 1 demonstrate ability to transfect cells, ISA 1 is also able to promote intracellular delivery of non-permeant toxins. The aim of this study was to synthesise random and block copolymers of ISA 1 and ISA 23 and investigate whether these second generation hybrids would allow optimisation of PAA biological characteristics. Random and block copolymers of ISA 1 and ISA 23 were synthesised by hydrogen transfer polyaddition to generate a library of PAAs with an ISA 23:ISA 1 molar ratios of 2:1 to 4:1. The resultant polymers have a pI slightly below 7.4 and a M(w) of 19,900-49,000 g/mol and a M(n) of 13,100-24,100 g/mol. Whereas none of the random or block copolymers were haemolytic at pH 7.4 all demonstrated pH-dependent membrane activity. At pH 5.5 they caused 50-60% haemoglobin (Hb) release over 1 h. This was slightly less than that seen for ISA 23 (80% Hb release). None of the copolymers were cytotoxic against B16F10 cells during a 72 h incubation (IC(50) > 2 mg/ml; MTT assay). The ability of the random and block copolymer PAAs to deliver the toxin gelonin was also examined, but only ISA 1 and the block copolymer B2 (ISA 23:ISA 1 at a 2:1 molar ratio) were able to promote intracellular delivery, as measured by cytotoxic activity. It would be interesting to study the body distribution of B2 and determine whether this toxin-delivering PAA is able to escape liver capture.  相似文献   

17.
部分水解聚丙烯酰胺-羟乙基纤维素的水相pH响应性自组装   总被引:1,自引:0,他引:1  
为考察无规共聚物在全水相环境中的自组装行为, 合成了结构类似于无规共聚物的低相对分子质量的部分水解聚丙烯酰胺(HPAM). 尝试改变水溶液pH值来诱导HPAM与羟乙基纤维素(HEC)发生自组装, 采用透射电子显微镜(TEM)观察到不同pH值时分别获得了100 nm的似正方体胶束, 200 nm×100 nm的类椭球胶束, 100 nm的串珠状胶束以及500 nm×300 nm×50 nm的半月形胶束等pH响应性核壳型聚合物胶束. 建立了金在胶束表面原位还原耦合TEM表征方法, 用于检测低衬度聚合物胶束的纳米细节; 配合电子探针X射线微区分析(EPMA)和扫描电子显微镜(SEM), 证实了半月形聚合物胶束的精致分级构造为亲水性内囊@疏水性连续囊壁@亲水性外壳的多泡囊泡, 并证实pH=0.9时多泡囊泡崩解为疏水性内核@亲水性外壳的10 nm类球体小胶束. 通过分析链节质子化状态的pH响应性, 结合zeta电位和吸光度测定结果, 阐释了不同pH值时组成聚合物胶束的核和壳的链段归属, 获得了全水相中HPAM自组装驱动力和形貌方面的全新知识.  相似文献   

18.
A series of perylene and naphthalene diimide‐containing random copolyurethanes with different ratios of perylene/naphthalene diimide content was synthesized and characterized. Copolymerization improved the solubility of these rigid aromatic diimides, and the copolymers were soluble in common organic solvents like chloroform, tetrahydrofuran, and so forth. The absorption spectra of perylene‐based copolymers showed a red‐shifted peak at a wavelength of 557 nm corresponding to J‐type aggregates. For naphthalene copolymers, the quenching of fluorescence at higher naphthalene incorporation suggested the presence of aggregates because of the extensive π‐π stacking of the aromatic core. FTIR spectroscopic analysis showed that the hydrogen bonding tendency of the polymer decreased with increase in perylene/naphthalene incorporation. The fluorescence spectra of the perylene polymers were exactly a mirror image of the absorption spectra. The fluorescence spectra of the naphthalene polymers at higher naphthalene incorporation showed a red‐shifted excimer like emission peak, which was assigned as static excimers based on their excitation spectra. These polymers could exhibit two types of secondary interaction modes, namely, hydrogen bonding (via urethane linkage) and π‐stacking (via aromatic perylene or naphthalene units) thus highlighting the importance of polymer design in inducing self‐organization at both low and high incorporation of the rigid bisimide moieties. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1224–1235, 2009  相似文献   

19.
pH‐Responsive homopolymers and copolymers with naphthoic acid side groups were synthesized via base‐assisting living cationic polymerization. To this end, the feasibility of the living cationic polymerization of ethyl 6‐[2‐(vinyloxy)ethoxy]‐2‐naphthoate (EVEN) was first examined using a base‐assisting initiating system. Et1.5AlCl1.5 as a Lewis acid catalyst induced the living cationic polymerization of EVEN in the presence of ethyl acetate or 1,4‐dioxane in CH2Cl2 at 0 °C. In contrast, the use of naphthoxyethyl vinyl ether (NpOVE), which is a nonsubstituted counterpart, resulted in a poorly controlled polymerization under these conditions. The presence of the carboxy ester was most likely critical in preventing side reactions. A subsequent alkaline hydrolysis of the side‐chain esters quantitatively yielded a carboxy‐containing polymer. Aqueous solutions of this polymer underwent pH‐driven phase separation at pH 7.0. Well‐defined random and block copolymers were also prepared with various functional segments, and their stimuli‐responsive behaviors were investigated in terms of solution transmittance and aggregate size. Block copolymers containing two different pH‐responsive segments formed micelle‐like structures between the two phase‐separated pH values, and dual stimuli‐responsive copolymers containing a pH‐responsive polyacid segment and a thermosensitive segment self‐assembled in the water in response to both the pH and temperature. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5239–5247  相似文献   

20.
A series of novel temperature‐ and pH‐responsive graft copolymers, poly(L ‐glutamic acid)‐g‐poly(N‐isopropylacrylamide), were synthesized by coupling amino‐semitelechelic poly(N‐isopropylacrylamide) with N‐hydroxysuccinimide‐activated poly(L ‐glutamic acid). The graft copolymers and their precursors were characterized, by ESI‐FTICR Mass Spectrum, intrinsic viscosity measurements and proton nuclear magnetic resonance (1H NMR). The phase‐transition and aggregation behaviors of the graft copolymers in aqueous solutions were investigated by the turbidity measurements and dynamic laser scattering. The solution behavior of the copolymers showed dependence on both temperature and pH. The cloud point (CP) of the copolymer solution at pH 5.0–7.4 was slightly higher than that of the solution of the PNIPAM homopolymer because of the hydrophilic nature of the poly(glutamic acid) (PGA) backbone. The CP markedly decreased when the pH was lowered from 5 to 4.2, caused by the decrease in hydrophilicity of the PGA backbone. At a temperature above the lower critical solution temperature of the PNIPAM chain, the copolymers formed amphiphilic core‐shell aggregates at pH 4.5–7.4 and the particle size was reduced with decreasing pH. In contrast, larger hydrophobic aggregates were formed at pH 4.2. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4140–4150, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号