首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we present a novel type of synchronization called complex modified projective synchronization (CMPS) and study it to a system of two chaotic complex nonlinear 3-dimensional flows, possessing chaotic attractors. Based on the Lyapunov function approach, a scheme is designed to achieve CMPS for such pairs of (either identical or different) complex systems. Analytical expressions for the complex control functions are derived using this scheme to achieve CMPS. This type of complex synchronization is considered as a generalization of several kinds of synchronization that have appeared in the recent literature. The master and slave chaotic complex systems achieved CMPS can be synchronized through the use of a complex scale matrix. The effectiveness of the obtained results is illustrated by a studying two examples of such coupled chaotic attractors in the complex domain. Numerical results are plotted to show the rapid convergence of modulus errors to zero, thus demonstrating that CMPS is efficiently achieved.  相似文献   

2.
This paper investigates the phenomenon of chaos synchronization of two different chaotic complex systems of the Chen and Lü type via the methods of active control and global synchronization. In this regard, it generalizes earlier work on the synchronization of two identical oscillators in cases where the drive and response systems are different, the parameter space is larger, and the dimensionality increases due to the complexification of the dependent variables. The idea of chaos synchronization is to use the output of the drive system to control the response system so that the output of the response system converges to the output of the drive system as time increases. Lyapunov functions are derived to prove that the differences in the dynamics of the two systems converge to zero exponentially fast, explicit expressions are given for the control functions and numerical simulations are presented to illustrate the success of our chaos synchronization techniques. We also point out that the global synchronization method is better suited for synchronizing identical chaotic oscillators, as it has serious limitations when applied to the case where the drive and response systems are different.  相似文献   

3.
Our main objective in this work is to investigate complete synchronization (CS) of n-dimensional chaotic complex systems with uncertain parameters. An adaptive control scheme is designed to study the synchronization of chaotic attractors of these systems. We applied this scheme, as an example, to study complete synchronization of chaotic attractors of two identical complex Lorenz systems. The adaptive control functions and the parameters estimation laws are calculated analytically based on the complex Lyapunov function. We show that the error dynamical systems are globally stable. Numerical simulations are computed to check the analytical expressions of adaptive controllers.  相似文献   

4.
In this article, the active control method is used to investigate the hybrid phase synchronization between two identical Rikitake and Windmi systems, and also between two nonidentical systems taking Rikitake as the driving system and Windmi system as the response system. Based on the Lyapunov stability theory, the sufficient conditions for achieving the hybrid phase synchronization of two chaotic systems are derived. The active control method is found to be very effective and convenient to achieve hybrid phase chaos synchronization of the identical and nonidentical chaotic systems. Numerical simulation results which are carried out using the Runge–Kutta method show its feasibility and effectiveness for the synchronization of dynamical chaotic systems.  相似文献   

5.
A new fuzzy observer for lag synchronization is given in this paper. By investi- gating synchronization of chaotic systems, the structure of drive-response lag synchronization for fuzzy chaos system based on fuzzy observer is proposed. A new lag synchronization criterion is derived using the Lyapunov stability theorem, in which control gains are obtained under the LMI condition. The proposed approach is applied to the well-known Chen's systems. A simulation example is presented to illustrate its effectiveness.  相似文献   

6.
This paper proposes the chaos control and the modified projective synchronization methods for unknown heavy symmetric chaotic gyroscope systems via Gaussian radial basis adaptive backstepping control. Because of the nonlinear terms of the gyroscope system, the system exhibits chaotic motions. Occasionally, the extreme sensitivity to initial states in a system operating in chaotic mode can be very destructive to the system because of unpredictable behavior. In order to improve the performance of a dynamic system or avoid the chaotic phenomena, it is necessary to control a chaotic system with a regular or periodic motion beneficial for working with a particular condition. As chaotic signals are usually broadband and noise-like, synchronized chaotic systems can be used as cipher generators for secure communication. Obviously, the importance of obtaining these objectives is specified when the dynamics of gyroscope system are unknown. In this paper, using the neural backstepping control technique, control laws are established which guarantees the chaos control and the modified projective synchronization of unknown chaotic gyroscope system. In the neural backstepping control, Gaussian radial basis functions are utilized to on-line estimate the system dynamic functions. Also, the adaptation laws of the on-line estimators are derived in the sense of Lyapunov function. Thus, the unknown chaotic gyroscope system can be guaranteed to be asymptotically stable. Also, the control objectives have been achieved.  相似文献   

7.
Based on Rikitake system, a new chaotic system is discussed. Some basic dynamical properties, such as equilibrium points, Lyapunov exponents, fractal dimension, Poincaré map, bifurcation diagrams and chaotic dynamical behaviors of the new chaotic system are studied, either numerically or analytically. The obtained results show clearly that the system discussed is a new chaotic system. By utilizing the fractional calculus theory and computer simulations, it is found that chaos exists in the new fractional-order three-dimensional system with order less than 3. The lowest order to yield chaos in this system is 2.733. The results are validated by the existence of one positive Lyapunov exponent and some phase diagrams. Further, based on the stability theory of the fractional-order system, projective synchronization of the new fractional-order chaotic system through designing the suitable nonlinear controller is investigated. The proposed method is rather simple and need not compute the conditional Lyapunov exponents. Numerical results are performed to verify the effectiveness of the presented synchronization scheme.  相似文献   

8.
In the paper, the dynamical behaviors of a new fractional order hyperchaotic Rabinovich system are investigated, which include its local stability, hyperchaos, chaotic control and synchronization. Firstly, a new fractional order hyperchaotic Rabinovich system with Caputo derivative is proposed. Then, the hyperchaotic attractors of the commensurate and incommensurate fractional order hyperchaotic Rabinovich system are found. After that, four linear feedback controllers are designed to stabilize this fractional order system Finally, by using the active control method the synchronization is studied between the fractional order hyperchaotic and chaos controlled Rabinovich system In addition, the theoretical predictions are confirmed by numerical simulations.  相似文献   

9.
A generalized Sprott C system with only two stable equilibria is investigated by detailed theoretical analysis as well as dynamic simulation, including some basic dynamical properties, Lyapunov exponent spectra, fractal dimension, bifurcations, and routes to chaos. In the parameter space where the equilibria of the system are both asymptotically stable, chaotic attractors coexist with period attractors and stable equilibria. Moreover, the existence of singularly degenerate heteroclinic cycles for a suitable choice of the parameters is investigated. Periodic solutions and chaotic attractors can be found when these cycles disappear.  相似文献   

10.
This paper attempts to construct a new 3-D chaotic system which is easily hardware realisable and fulfil the requirement of a real-life application. The proposed system is relatively more chaotic (based on the first Lyapunov exponent) and has larger bandwidth than 50 available chaotic systems. Lyapunov spectrum and bifurcation diagram of the system reveal that it has chaotic behaviour for a wider range of its parameters. Such characteristic is helpful for an easy hardware realisation of the system. It is to be noted that the reported systems with hidden attractors are not considered here for the comparison. The proposed system has more complexity and disorder due to several unique properties like asymmetry to principle coordinates, dissimilar and asymmetrical equilibria, and non-uniform contraction and expansion of volume in phase space. The proposed system also exhibits asymmetric pairs of coexisting attractors during its operation in two modes. The new system has different routes to chaos including crisis, an inverse crisis, period-doubling and reverse period-doubling routes to chaos with the variation of parameters. MATLAB simulation results confirm the claims, and the results of hardware circuit realisation validate the simulation results. An application of the new system is shown by masking and retrieving an information signal. It is also shown that the proposed system is better than a well-known Lorenz chaotic system for this application. A system with the above unique properties is rare in the literature.  相似文献   

11.
This paper investigates the robust chaos synchronization problem for the four-dimensional energy resource systems with mismatched parameters. Based on the Lyapunov stability theory, the sufficient conditions for the synchronization are obtained analytically and an adaptive feedback control law is derived to make the states of two slightly mismatched chaotic systems asymptotically synchronized. Finally, some numerical simulations are performed to verify the proposed results.  相似文献   

12.
Lag synchronization of hyperchaotic complex nonlinear systems   总被引:1,自引:0,他引:1  
In this paper, we study the lag synchronization (LS) of n-dimensional hyperchaotic complex nonlinear systems. The idea of the nonlinear control technique based on the complex Lyapunov function with lag in time is used to propose a scheme to investigate LS of hyperchaotic attractors of these systems. Both complex Lyapunov and control functions are introduced. For illustration, the scheme is applied to two hyperchaotic complex Lorenz systems. The real and complex control functions are derived analytically to achieve LS and to show that the complex error dynamical systems are globally stable. Numerical results are calculated to test the validity of the analytical expressions of control functions to achieve LS of two identical hyperchaotic attractors.  相似文献   

13.
The bifurcation mechanism of bursting oscillations in a three-dimensional autonomous slow-fast Kingni et al. system (Nonlinear Dyn. 73, 1111–1123, 2013) and its fractional-order form are investigated in this paper. The stability analysis of the system is carried out assuming that the slow subsystem evolves on quasi-static state. It is reveaved that the bursting oscillations found in the system result from the system switching between the unstable and the stable states of the only equilibrium point of the fast subsystem. We refer this class of bursting to “source/bursting.” The coexistence of symmetrical bursting limit cycles and chaotic bursting attractors is observed. In addition, the fractional-order chaotic slow-fast system is studied. The lowest order of the commensurate form of this system to exhibit chaotic behavior is found to be 2.199. By tuning the commensurate fractional-order, the chaotic slow-fast system displays Chen- and Lorenz-like chaotic attractors, respectively. The stability analysis of the controlled fractional-order-form of the system to its equilibria is undertaken using Routh–Hurwitz conditions for fractional-order systems. Moreover, the synchronization of chaotic bursting oscillations in two identical fractional-order systems is numerically studied using the unidirectional linear error feedback coupling scheme. It is shown that the system can achieve synchronization for appropriate coupling strength. Furthermore, the effect of fractional derivatives orders on chaos control and synchronization is analyzed.  相似文献   

14.
This letter proposes a new 3D quadratic autonomous chaotic system which displays an extremely complicated dynamical behavior over a large range of parameters. The new chaotic system has five real equilibrium points. Interestingly, this system can generate one-wing, two-wing, three-wing and four-wing chaotic attractors and periodic motion with variation of only one parameter. Besides, this new system can generate two coexisting one-wing and two coexisting two-wing attractors with different initial conditions. Furthermore, the transient chaos phenomenon happens in the system. Some basic dynamical behaviors of the proposed chaotic system are studied. Furthermore, the bifurcation diagram, Lyapunov exponents and Poincaré mapping are investigated. Numerical simulations are carried out in order to demonstrate the obtained analytical results. The interesting findings clearly show that this is a special strange new chaotic system, which deserves further detailed investigation.  相似文献   

15.
This paper presents a novel bounded four-dimensional (4D) chaotic system which can display hyperchaos, chaos, quasiperiodic and periodic behaviors, and may have a unique equilibrium, three equilibria and five equilibria for the different system parameters. Numerical simulation shows that the chaotic attractors of the new system exhibit very strange shapes which are distinctly different from those of the existing chaotic attractors. In addition, we investigate the ultimate bound and positively invariant set for the new system based on the Lyapunov function method, and obtain a hyperelliptic estimate of it for the system with certain parameters.  相似文献   

16.
由于广义蔡氏电路存在2个对称的稳定平衡点,周期激励可能导致系统出现相应于不同初值的2种共存的分岔模式. 概周期解由环面破裂进入混沌,混沌吸引子从相位不同步逐渐演化为同步,并进一步随着参数的变化,产生分裂现象. 分裂后的2个相互对称的混沌吸引子仍存在相位同步效应,这2个混沌吸引子再次相互作用后形成扩大了的混沌吸引子,并交替围绕2个子混沌结构来回振荡. 同时,在混沌过程中,其轨迹在相当长的一段时间内严格按照概周期行为振荡,即混沌结构中存在局部概周期行为,这种局部概周期行为随参数的变化会逐步减弱,直至消失.   相似文献   

17.
This paper investigates the problem of fuzzy impulsive control to synchronize two chaotic systems using a novel time-dependent Lyapunov function approach. Compared with the existing time-independent Lyapunov methods, the proposed method enables us to exploit more information on the impulsive intervals. Initially, using the Lyapunov technique and two parameterized linear matrix inequality (LMI) techniques, some less conservative synchronization criteria via a fuzzy impulsive controller using the states of both drive and response chaotic systems are derived. Subsequently, an LMI approach to designing such a fuzzy impulsive controller is developed to realize the synchronization. Finally, the proposed method is applied to the chaotic Lorenz system and Rösler system to illustrate its effectiveness.  相似文献   

18.
Recently, the fractional-order Chen–Lee system was proven to exhibit chaos by the presence of a positive Lyapunov exponent. However, the existence of chaos in fractional-order Chen–Lee systems has never been theoretically proven in the literature. Moreover, synchronization of chaotic fractional-order systems was extensively studied through numerical simulations in some of the literature, but a theoretical analysis is still lacking. Therefore, we devoted ourselves to investigating the theoretical basis of chaos and hybrid projective synchronization of commensurate and incommensurate fractional-order Chen–Lee systems in this paper. Based on the stability theorems of fractional-order systems, the necessary conditions for the existence of chaos and the controllers for hybrid projective synchronization were derived. The numerical simulations show coincidence with the theoretical results.  相似文献   

19.
Backstepping design is proposed for adaptive synchronization of a class of chaotic systems with unknown bounded uncertainties. An adaptive backstepping control law is derived to make the error signals between the master and slave systems asymptotically synchronized without knowing the upper-bounds of the uncertainties in advance. The stability analysis is proved by using a well-known Lyapunov stability. Two illustrative examples are presented to show the effectiveness of the proposed adaptive chaos synchronization.  相似文献   

20.
The model and the normalized state equations of the novel version of the Colpitts oscillator designed to operate in the ultra-high frequency range are presented. The circuit is investigated numerically and simulations demonstrate chaos in the microwave frequency range. Typical phase portrait, Lyapunov exponent and Lyapunov dimension are calculated using a piece-wise linear approximation of nonlinear IV characteristic of the bipolar junction transistor. In addition, the feedback controller is applied to achieve chaos synchronization for two identical improved chaotic Colpitts oscillators. In the frame the nonlinear function of the system is used as a nonlinear feedback term for the stability of the error dynamics. Finally, numerical simulations show that this control method is feasible for this oscillator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号