首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The alpha-methallyl free radical is formed in the flash photolysis of 3-methylbut-1-ene, and cis-pent-2-ene in the vapor phase, and then subsequent reactions have been investigated by kinetic spectroscopy and gas-liquid chromatography. The photolysis flash was of short duration and it was possible to follow the kinetics of the radicals' decay, which occurred predominantly by bimolecular recombination. The measured rate constant for the alpha-methallyl recombination was (3.5+/-0.3) x 10(10) mol(-1) ls(-1) at 295+/-2K. The absolute extinction coefficients of the alpha-methallyl radical are calculated from the optical densities of the absorption bands. Detailed analysis of related absorption bands and lifetime measurements in the original alpha-methallyl high-resolution discrete absorption spectrum image were also carried out by image processing techniques.  相似文献   

2.
One-electron oxidation of alcohols such as methanol, ethanol, and 2-propanol by 1,3,5-trimethoxybenzene radical cation (TMB*+) in the excited state (TMB*+*) was observed during the two-color two-laser flash photolysis. TMB*+ was formed by the photoinduced bimolecular electron-transfer reaction from TMB to 2,3,5,6-tetrachlorobenzoquinone (TCQ) in the triplet excited-state during the first 355-nm laser flash photolysis. Then, TMB*+* was generated from the selective excitation of TMB*+ during the second 532 nm laser flash photolysis. Hole transfer rate constants from TMB*+* to methanol, ethanol, and 2-propanol were calculated to be (5.2 +/- 0.5) x 10(10), (1.4 +/- 0.3) x 10(11), and (3.2 +/- 0.6) x 10(11) M-1 s-1, respectively. The order of the hole transfer rate constants is consistent with oxidation potentials of alcohol. Formation of TCQH radical (TCQH*) with a characteristic absorption peak at 435 nm was observed in the microsecond time scale, suggesting that deprotonation of the alcohol radical cation occurs after the hole transfer and that TCQ radical anion (TCQ*-), generated together with TMB*+ by the photoinduced electron-transfer reaction, reacts with H+ to give TCQH*.  相似文献   

3.
Excited-state properties of radical cations of substituted oligothiophenes ( nT (*+), n denotes the number of thiophene rings, n = 3, 4, 5) in solution were investigated by using various laser flash photolysis techniques including two-color two-laser flash photolysis. nT (*+) generated by photoinduced electron transfer to p-chloranil or resonant two-photon ionization (RTPI) by using the first 355-nm ns laser irradiation was selectively excited with the second picosecond laser (532 nm). Bleaching of the absorption of nT (*+) together with growth of a new absorption was observed during the second laser irradiation, indicating the generation of nT (*+) in the excited state ( nT (*+)*). The D 1 state lifetime was estimated to be 34 +/- 4, 24 +/- 2, and 18 +/- 1 ps for 3T (*+), 4T (*+), and 5T (*+), respectively. In the presence of hole acceptor (Q), bleaching of nT (*+) and growth of Q (*+) were observed upon selective excitation of nT (*+) during the nanosecond-nanosecond two-color two-laser flash photolysis, indicating the hole transfer from nT (*+)(D 1) to Q. Recovery of nT (*+) was also observed together with decay of Q (*+) because of regeneration of nT (*+) by hole transfer from Q (*+) to nT at the diffusion-limiting rate. It was suggested that the hole transfer rate ( k HT) from nT (*+)(D 1) to Q depended on the free-energy change for hole transfer (-Delta G = 1.41-0.46 eV). The estimated k HT faster than the diffusion-limiting rate can be explained by the contribution of the static quenching for the excited species in the presence of high concentration of Q (0.1-1.0 M).  相似文献   

4.
The reaction of Cl atoms with iodoethane has been studied via a combination of laser flash photolysis/resonance fluorescence (LFP-RF), environmental chamber/Fourier transform (FT)IR, and quantum chemical techniques. Above 330 K, the flash photolysis data indicate that the reaction proceeds predominantly via hydrogen abstraction. The following Arrhenius expressions (in units of cm3 molecule(-1) s(-1)) apply over the temperature range 334-434 K for reaction of Cl with CH3CH2I (k4(H)) and CD3CD2I (k4(D)): k4(H) = (6.53 +/- 3.40) x 10(-11) exp[-(428 +/- 206)/T] and k4(D) = (2.21 +/- 0.44) x 10(-11) exp[-(317 +/- 76)/T]. At room temperature and below, the reaction proceeds both via hydrogen abstraction and via reversible formation of an iodoethane/Cl adduct. Analysis of the LFP-RF data yields a binding enthalpy (0 K) for CD3CD2I x Cl of 57 +/- 10 kJ mol(-1). Calculations using density functional theory show that the adduct is characterized by a C-I-Cl bond angle of 84.5 degrees; theoretical binding enthalpies of 38.2 kJ/mol, G2'[ECP(S)], and 59.0 kJ mol(-1), B3LYP/ECP, are reasonably consistent with the experimentally derived result. Product studies conducted in the environmental chamber show that hydrogen abstraction from both the -CH2I and -CH3 groups occur to a significant extent and also provide evidence for a reaction of the CH3CH2I x Cl adduct with CH3CH2I, leading to CH3CH2Cl formation. Complementary environmental chamber studies of the reaction of Cl atoms with 2-iodopropane, CH3CHICH3, are also presented. As determined by relative rate methods, the reaction proceeds with an effective rate coefficient, k6, of (5.0 +/- 0.6) x 10(-11) cm3 molecule(-1) s(-1) at 298 K. Product studies indicate that this reaction also occurs via two abstraction channels (from the CH3 groups and from the -CHI- group) and via reversible adduct formation.  相似文献   

5.
The rate constants for the gas-phase reactions of isopropyl- and tert-butylperoxy radicals with nitric oxide (NO) have been studied at 298 +/- 2 K and a total pressure of 3-4 Torr (He buffer) using a laser flash photolysis technique coupled with a time-resolved negative-ionization mass spectrometry. The alkyl peroxy radicals were generated by the reaction of alkyl radicals with excess O(2), where alkyl radicals were prepared by laser photolysis of several precursor molecules. The rate constants were determined to be k(i-C(3)H(7)O(2) + NO) = (8.0 +/- 1.5) x 10(-12) and k(t-C(4)H(9)O(2) + NO) = (8.6 +/- 1.4) x 10(-12) cm(3) molecule(-1) s(-1). The results in combination with our previous studies are discussed in terms of the systematic reactivity of alkyl peroxy radicals toward NO.  相似文献   

6.
Reactions of chlorine radicals might play a role in aqueous aerosols where a core of inorganic components containing insulators such as SiO2 and dissolved HUmic-LIke Substances (HULIS) are present. Herein, we report conventional flash photolysis experiments performed to investigate the aqueous phase reactions of silica nanoparticles (NP) and humic acid (HA) with chlorine atoms, Cl*, and dichloride radical anions, Cl2*-. Silica NP and HA may be taken as rough models for the inorganic core and HULIS contained in atmospheric particles, respectively. Both Cl* and Cl2*- were observed to react with the deprotonated silanols on the NP surface with reaction rate constants, k +/- sigma, of (9 +/- 6) x 10(7) M(-1) s(-1) and (7 +/- 4) x 10(5) M(-1) s(-1), respectively. The reaction of Cl* with the surface deprotonated silanols leads to the formation of SiO* defects. HA are also observed to react with Cl* and Cl2*- radicals, with reaction rate constants at pH 4 of (3 +/- 2) x 10(10) M(-1) s(-1) and (1.2 +/- 0.3) x 10(9) M(-1) s(-1), respectively. The high values observed for these constants were discussed in terms of the multifunctional heterogeneous mixture of organic molecules conforming HA.  相似文献   

7.
A laser flash photolysis-long path UV-visible absorption technique has been employed to investigate the kinetics of aqueous phase reactions of chlorine atoms (Cl) and dichloride radicals (Cl2(-)) with four organic sulfur compounds of atmospheric interest, dimethyl sulfoxide (DMSO; CH3S(O)CH3), dimethyl sulfone (DMSO2; CH3(O)S(O)CH3), methanesulfinate (MSI; CH3S(O)O-), and methanesulfonate (MS; CH3(O)S(O)O-). Measured rate coefficients at T = 295 +/- 1 K (in units of M(-1) s(-1)) are as follows: Cl + DMSO, (6.3 +/- 0.6) x 10(9); Cl2(-) + DMSO, (1.6 +/- 0.8) x 10(7); Cl + DMSO2, (8.2 +/- 1.6) x 10(5); Cl2(-) + DMSO2, (8.2 +/- 5.5) x 10(3); Cl2(-) + MSI, (8.0 +/- 1.0) x 10(8); Cl + MS, (4.9 +/- 0.6) x 10(5); Cl2(-) + MS, (3.9 +/- 0.7) x 10(3). Reported uncertainties are estimates of accuracy at the 95% confidence level and the rate coefficients for MSI and MS reactions with Cl2(-) are corrected to the zero ionic strength limit. The absorption spectrum of the DMSO-Cl adduct is reported; peak absorbance is observed at 390 nm and the peak extinction coefficient is found to be 5760 M(-1) cm(-1) with a 2sigma uncertainty of +/-30%. Some implications of the new kinetics results for understanding the atmospheric sulfur cycle are discussed.  相似文献   

8.
Time-resolved studies of germylene, GeH2, generated by the 193 nm laser flash photolysis of 3,4-dimethyl-1-germacyclopent-3-ene, have been carried out to obtain rate constants for its bimolecular reactions with ethyl- and diethylgermanes in the gas phase. The reactions were studied over the pressure range 1-100 Torr with SF6 as bath gas and at five temperatures in the range 297-564 K. Only slight pressure dependences were found for GeH2 + EtGeH3 (399, 486, and 564 K). The high pressure rate constants gave the following Arrhenius parameters: for GeH2 + EtGeH3, log A = -10.75 +/- 0.08 and Ea = -6.7 +/- 0.6 kJ mol-1; for GeH2 + Et2GeH2, log A = -10.68 +/- 0.11 and Ea = -6.95 +/- 0.80 kJ mol-1. These are consistent with fast, near collision-controlled, association processes at 298 K. RRKM modeling calculations are, for the most part, consistent with the observed pressure dependence of GeH2 + EtGeH3. The ethyl substituent effects have been extracted from these results and are much larger than the analogous methyl substituent effects in the SiH2 + methylsilane reaction series. This is consistent with a mechanistic model for Ge-H insertion in which the intermediate complex has a sizable secondary barrier to rearrangement.  相似文献   

9.
The kinetics and mechanism of the reactions of Cl atoms and OH radicals with CH3CH2CHO were investigated at room temperature using two complementary techniques: flash photolysis/UV absorption and continuous photolysis/FTIR smog chamber. Reaction with Cl atoms proceeds predominantly by abstraction of the aldehydic hydrogen atom to form acyl radicals. FTIR measurements indicated that the acyl forming channel accounts for (88 +/- 5)%, while UV measurements indicated that the acyl forming channel accounts for (88 +/- 3)%. Relative rate methods were used to measure: k(Cl + CH3CH2CHO) = (1.20 +/- 0.23) x 10(-10); k(OH + CH3CH2CHO) = (1.82 +/- 0.23) x 10(-11); and k(Cl + CH3CH2C(O)Cl) = (1.64 +/- 0.22) x 10(-12) cm3 molecule(-1) s(-1). The UV spectrum of CH3CH2C(O)O2, rate constant for self-reaction, and rate constant for cross-reaction with CH3CH2O2 were determined: sigma(207 nm) = (6.71 +/- 0.19) x 10(-18) cm2 molecule(-1), k(CH3CH2C(O)O2 + CH3CH2C(O)O2) = (1.68 +/- 0.08) x 10(-11), and k(CH3CH2C(O)O2 + CH3CH2O2) = (1.20 +/- 0.06) x 10(-11) cm3 molecule(-1) s(-1), where quoted uncertainties only represent 2sigma statistical errors. The infrared spectrum of C2H5C(O)O2NO2 was recorded, and products of the Cl-initiated oxidation of CH3CH2CHO in the presence of O2 with, and without, NO(x) were identified. Results are discussed with respect to the atmospheric chemistry of propionaldehyde.  相似文献   

10.
The time-resolved absorption and fluorescence spectra of the azaxanthone (AX) ketyl radical (AXH.) in the excited state (AXH.(Dn) (n = 1 or 2)) were observed during the nanosecond-picosecond two-color two-laser flash photolysis. AXH. showed dual fluorescence peaks at 460 and 645 nm, which were assigned to the D2 --> D0 and D1 --> D0 transitions, respectively. It was found that the lifetime of the D2 --> D0 fluorescence (1.0 ns) was longer than that of the D1 --> D0 fluorescence (0.4 ns). The fluorescent quantum yields of the D1 --> D0 and D2 --> D0 fluorescence were estimated to be 0.0008 +/- 0.0002 and 0.05 +/- 0.02, respectively. These anomalous emitting properties can be attributed to the pyridine ring in AX. AXH. is a new example of a neutral radical which violates Kasha's rule.  相似文献   

11.
The first experimental determination of a singlet-triplet energy gap (DeltaE(st)) for an organic nitrenium ion was made for 1, 3-dimethylbenzotriazolium ion 1. Laser flash photolysis was used to determine DeltaE(st) for this persistent nitrenium ion and a value of -66 +/- 3 kcal mol(-)(1) was obtained. DFT calculations show excellent agreement with the experiment.  相似文献   

12.
Reported is a time-resolved infrared and optical kinetics investigation of the transient species CH(3)C(O)Mn(CO)(4) (I(Mn)) generated by flash photolysis of the acetyl manganese pentacarbonyl complex CH(3)C(O)Mn(CO)(5) (A(Mn)) in cyclohexane and in tetrahydrofuran. Activation parameters were determined for CO trapping of I(Mn) to regenerate A(Mn) (rate = k(CO) [CO][I(Mn)]) as well as the methyl migration pathway to form methylmanganese pentacarbonyl CH(3)Mn(CO)(5) (M(Mn)) (rate = k(M)[I(Mn)]). These values were Delta H(++)(CO) = 31 +/- 1 kJ mol(-1), Delta S(++)(CO) = -64 +/- 3 J mol(-1) K(-1), Delta H(++)(M) = 35 +/- 1 kJ mol(-1), and Delta S(++)(M) = -111 +/- 3 J mol(-1) K(-1). Substantially different activation parameters were found for the methyl migration kinetics of I(Mn) in THF solutions where Delta H(++)(M) = 68 +/- 4 kJ mol(-1) and Delta S(++)(M) = 10 +/- 10 J mol(-1) K(-1), consistent with the earlier conclusion (Boese, W. T.; Ford, P. C. J. Am. Chem. Soc. 1995, 117, 8381-8391) that the composition of I(Mn) is different in these two media. The possible isotope effect on k(M) was also evaluated by studying the intermediates generated from flash photolysis of CD(3)C(O)Mn(CO)(5) in cyclohexane, but this was found to be nearly negligible (k(M)(h)/k(M)(d) (298 K) = 0.97 +/- 0.05, Delta H(++)(M)(d) = 37 +/- 4 kJ mol(-1), and Delta S(++)(M)(d) = -104 +/- 12 J mol(-1) K(-1)). The relevance to the migratory insertion mechanism of CH(3)Mn(CO)(5), a model for catalytic carbonylations, is discussed.  相似文献   

13.
The oxidation of tryptophan photosensitized by PtCl6(2-) has been investigated in aqueous solutions at different pH using nanosecond laser flash photolysis. Cationic and neutral radicals of tryptophan were detected at pH 2.8 and 8.5, respectively. The generation of the radical was attributed to oxidation by Cl2- that was formed from the homolytic bond cleavage in the excited state of PtCl6(2-). The bimolecular rate constant derived from the kinetics analysis, 2.8 +/- 0.2 x 10(9) M-1 s-1, is in good agreement with the value obtained in earlier pulse radiolysis studies. Both the cationic and neutral radicals decayed by second-order kinetics, consistent with the dimerization process.  相似文献   

14.
The title reactions were studied using laser flash photolysis/laser-induced-fluorescence (FP-LIF) techniques. The two spin-orbit states, Cl*(2P(1/2)) and Cl(2P(3/2)), were detected using LIF at 135.2 and 134.7 nm, respectively. Measured reaction rate constants were as follows (units of cm3 molecule(-1) s(-1)): k(Cl(2P(3/2))+CH3OH) = (5.35 +/- 0.24) x 10(-11), k(Cl(2P(3/2))+C2H5OH) = (9.50 +/- 0.85) x 10(-11), k(Cl(2P(3/2))+n-C3H7OH) = (1.71 +/- 0.11) x 10(-10), and k(Cl(2P(3/2))+i-C3H7OH) = (9.11 +/- 0.60) x 10(-11). Measured rate constants for total removal of Cl*(2P(1/2)) in collisions with CH3OH, C2H5OH, n-C3H7OH, and i-C3H7OH were (1.95 +/- 0.13) x 10(-10), (2.48 +/- 0.18) x 10(-10), (3.13 +/- 0.18) x 10(-10), and (2.84 +/- 0.16) x 10(-10), respectively; quoted errors are two-standard deviations. Although spin-orbit excited Cl*(2P(1/2)) atoms have 2.52 kcal/mol more energy than Cl(2P(3/2)), the rates of chemical reaction of Cl*(2P(1/2)) with CH3OH, C2H5OH, n-C3H7OH, and i-C3H7OH are only 60-90% of the corresponding Cl(2P(3/2)) atom reactions. Under ambient conditions spin-orbit excited Cl* atoms are responsible for 0.5%, 0.5%, 0.4%, and 0.7% of the observed reactivity of thermalized Cl atoms toward CH3OH, C2H5OH, n-C3H7OH, and i-C3H7OH, respectively.  相似文献   

15.
The formation of thymine dimers in the single-stranded oligonucleotide, (dT)20, is studied at room temperature by laser flash photolysis using 266 nm excitation. It is shown that the (6-4) adduct is formed within 4 ms via a reactive intermediate. The formation of cyclobutane dimers is faster than 200 ns. The overall quantum yield for the (6-4) formation is (3.7 +/- 0.3) x 10-3, and that of the cyclobutane dimers is (2.8 +/- 0.2) x 10-2. No triplet absorption is detected, showing that either the intersystem crossing yield decreases by 1 order of magnitude upon oligomerization (<1.4 x 10-3) or the triplet state reacts with unit efficiency in less than 200 ns to yield cyclobutane dimers.  相似文献   

16.
The excited state decay of the hydrocarbon radicals ethyl, C(2)H(5); propargyl, C(3)H(3); and benzyl, C(7)H(7) was investigated by femtosecond time-resolved photoionization. Radicals were generated by flash pyrolysis of n-propyl nitrite, propargyl bromide, and toluene, respectively. It is shown that the 2 (2)A(') (3s) Rydberg state of ethyl excited at 250 nm decays with a time constant of 20 fs. No residual signal was observed at longer delay times. For the 3 (2)B(1) state of propargyl excited at 255 nm a slower decay with a time constant 50+/-10 fs was determined. The 4 (2)B(2) state of benzyl excited at 255 nm decays within 150+/-30 fs.  相似文献   

17.
Time-resolved studies of silylene, SiH2, and dimethylsilylene, SiMe2, generated by the 193 nm laser flash photolysis of appropriate precursor molecules have been carried out to obtain rate constants for their bimolecular reactions with dimethylgermane, Me2GeH2, in the gas phase. SiMe2 + Me2GeH2 was studied at five temperatures in the range 299-555 K. Problems of substrate UV absorption at 193 nm at temperatures above 400 K meant that only three temperatures could be used reliably for rate constant measurement. These rate constants gave the Arrhenius parameters log(A/cm3 molecule(-1) s(-1)) = -13.25 +/- 0.16 and E(a) = -(5.01 +/- 1.01) kJ mol(-1). Only room temperature studies of SiH2 were carried out. These gave values of (4.05 +/- 0.06) x 10(-10) cm3 molecule(-1) s(-1) (SiH2 + Me2GeH2 at 295 K) and also (4.41 +/- 0.07) x 10(-10) cm3 molecule(-1) s(-1) (SiH2 + MeGeH3 at 296 K). Rate constant comparisons show the surprising result that SiMe2 reacts 12.5 times slower with Me2GeH2 than with Me2SiH2. Quantum chemical calculations (G2(MP2,SVP)//B3LYP level) of the model Si-H and Ge-H insertion processes of SiMe2 with SiH4/MeSiH3 and GeH4/MeGeH3 support these findings and show that the lower reactivity of SiMe2 with Ge-H bonds is caused by a higher secondary barrier for rearrangement of the initially formed complexes. Full details of the structures of intermediate complexes and the discussion of their stabilities are given in the paper. Other, related, comparisons of silylene reactivity are also presented.  相似文献   

18.
Laser flash photolysis of the quinol ester 2b in O2-saturated aqueous phosphate buffer at pH 7.1 with excitation at 266 nm generates a transient intermediate with lambda(max) 460 nm that decays in a first-order manner with an aqueous solution lifetime of (170 +/- 10) ns at 22 degrees C. This intermediate is not affected by O2, but reacts rapidly with N3- with an apparently diffusion-limited rate constant of (6.6 +/- 0.2) x 10(9) M-1 s-1. Steady state photolysis of 2b yields the quinol 3b as a major reaction product with a yield of ca. 30-35% after correction for photolytic decomposition of 3b. This is the same product that is quantitatively produced by hydrolysis of 2b in the dark. Photolysis of 2b in the presence of 40 mM N3- completely suppresses the yield of 3b The photolytic intermediate is identified as the aryloxenium ion 1b, that was previously indirectly detected by N3--trapping during the hydrolysis of 2b, based on the chemical behavior of the transient and the quantitative agreement of the N3-/solvent selectivity ratio, kaz/ks, measured directly during the flash photolysis experiment, and indirectly by the azide clock procedure during the hydrolysis reaction. Other, as of yet unidentified, transients are produced during the photolysis reaction. A strong transient absorbance band observed at 360 nm decays in a biphasic manner with two first-order rate constants, neither of which are affected by O2 or N3-. The lifetimes of the two intermediates of ca. 12 and 75 mus are considerably longer than that of 1b. Another very short-lived species can be detected at early reaction times (相似文献   

19.
Beta-carotene scavenges triplet diacetyl generated by laser flash photolysis with a second-order rate constant of 9.1+/-0.9 x 10(9) M(-1) s(-1) in deaerated benzene at 20 degrees C. In the presence of oxygen diacetyl dissociates to generate acetylperoxyl radicals. It is demonstrated that diacetyl does not dissociate to any appreciable extent in the absence of oxygen. The acetylperoxyl radical is scavenged by beta-carotene with second-order rate constant 9.2+/-0.6 x 10(8) M(-1) s(-1) in aerated benzene at 20 degrees C to give an adduct between the acetylperoxyl radical and beta-carotene, whereas no evidence of oxidation of beta-carotene by the strongly oxidizing acetylperoxyl radical to give the beta-carotene radical cation is found. This adduct decays with first-order rate constant 1.35+/-0.16 x 10(3) s(-1) to give (presumably) a beta-carotene epoxide and the acetyloxyl radical.  相似文献   

20.
Kinetics of the reaction Br + CH2ClBr <--> CHClBr + HBr (1, -1) were studied experimentally in the forward direction. The absolute reaction kinetics method of laser flash photolysis coupled with Br atom resonance fluorescence detection and three different relative-rate methods with gas-chromatographic analysis were applied to carry out the experiments. The rate constants determined were found to obey the Arrhenius law in the wide temperature range of T = 293-785 K providing the kinetic expression k1 = (2.8 +/- 0.1) x 10(13) exp[-(47.6 +/- 0.3) kJ mol(-1)/RT] cm3 mol(-1) s(-1) (the errors given refer to 1sigma precision). An ab initio direct dynamics method was used to study reaction (1, -1) theoretically. The electronic structure information including geometries, gradients, and force constants was obtained at the MP2 level of theory; and energies were improved at higher theoretical levels. Rate constants were calculated using the canonical variational transition state theory with small-curvature tunneling correction over the temperature range 200-1000 K. Theory substantially underestimates k1 compared to experiment. The agreement was found good with k(-1) reported previously predicting positive temperature dependence. The experimental kinetic parameters were utilized in thermochemical calculations yielding the recommended standard enthalpy of formation of delta(f)H degrees (298) (CHClBr) = (140 +/- 4) kJ mol(-1) (with 2sigma accuracy given).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号