首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Semiconductor nanowires of silicon have been synthesized within the pores of mesoporous silica using a novel supercritical fluid solution-phase approach. Mesoporous silica, formed by the hydrolysis of tetramethoxysilane (TMOS) in the presence of a triblock copolymer surfactant, was employed for the nucleation and growth of quantum-confined nanowires. The filling of the silica mesopores with crystalline silicon and the anchoring of these nanowires to the sides of the pores were confirmed by several techniques including electron microscopy, powder X-ray diffraction, 29Si magic angle spinning nuclear magnetic resonance, infrared spectroscopy, and X-ray fluorescence. Effectively, the silica matrix provides a means of producing a high density of stable, well-ordered arrays of semiconductor nanowires in a low dielectric medium. The ordered arrays of silicon nanowires also exhibited discrete electronic and photoluminescence transitions that could be exploited in a number of applications, including nanodevices and interconnects.  相似文献   

2.
3.
4.
Monolithic transparent mesoporous silica films embedded with zinc phthalocyanine (ZnPc) have been synthesized and it is shown that the encapsulated ZnPc dye molecules exist predominantly in monomeric form.  相似文献   

5.
Organically modified, ordered mesoporous silica films, which can provide hydrophobicity and low polarizability to the framework, were prepared using Brij-76 block copolymer as a template. Due to a fast condensation reaction of the silica precursor, mesostructured silica films were not properly synthesized. To circumvent this problem, a synthesis procedure was modified to provide an enhancement of pore periodicity through the incorporation of methyl ligands on the framework. The micropore volume was reduced, and the pore size was enlarged, as the concentration of the methyl ligands on the framework was increased. A mesophase transition from a two-dimensional hexagonal structure to a body-centered cubic (BCC) structure was observed according to the concentration of incorporated methyl ligands. The mechanical properties of the fabricated films were investigated according to the pore ordering and film density. The mechanical properties of the films with random pore geometry show a positive correlation between film density and elastic modulus. Meanwhile, the mechanical behavior of organically modified mesoporous silica films with periodic pore distribution represents a negative correlation within a certain density range, which is advantageous to the low-k materials. Especially, film with a low micropore volume fraction and BCC pore ordering is more applicable to a low-k material due to low dielectric constant and high mechanical strength.  相似文献   

6.
This paper reports on a new method for the preparation of mesoporous silica membranes on alumina hollow fibers. A surfactant-silica sol is filled in the lumen of an alpha-alumina hollow fiber. The filtration technique combined with an evaporation-induced self-assembly (EISA) process results in the formation of a continuous ordered mesoporous silica layer on the outer side of alpha-alumina hollow fibers. X-ray diffraction (XRD), transmission electron microscopy (TEM), and nitrogen isothermal adsorption measurements reveal that these membranes possess hexagonal (P6mm) mesostructures with pore diameters of 4.48 nm and BET surfaces of 492.3 m(2) g(-1). Scanning electron microscopy (SEM) studies show that the layers are defect free and energy-dispersive spectroscopy (EDS) mapping images further confirm the formation of continuous mesoporous silica layer on the outer side of alpha-alumina hollow fibers. Nitrogen and hydrogen permeance tests show that the membranes are defect free.  相似文献   

7.
8.
Highly ordered mesoporous organic-inorganic hybrid silica thin films with covalently bonded, positively chargeable -NH2 terminal groups were synthesized by evaporation induced self-assembly of tetraethoxysilane, 3-aminopropyl-triethoxysilane, and a nonionic surfactant under acid conditions and characterized using TEM, GISAXS, FTIR, SAW-based N2 sorption, and TGA.  相似文献   

9.
Various organic moieties are homogeneously introduced in high quantities into mesostructured porous silica films through a general co-condensation process, which influences the self-assembly mechanism, depending on the physico-chemical properties of each function.  相似文献   

10.
Highly ordered amino-functionalized mesoporous silica thin films have been directly synthesized by co-condensation of tetraethoxysilane (TEOS) and 3-aminopropyltriethoxysilane (APTES) in the presence of triblock copolymer Pluronic P123 surfactant species under acidic conditions by sol-gel dip-coating. The effect of the sol aging on thin films organization is systematically studied, and the optimal sol aging time is obtained. The amino-functionalized mesoporous silica thin films exhibit a long-range ordering of 2D hexagonal (p6mm) mesostructure with a large pore size of 8.3 nm, a large Brunauer–Emmett–Teller (BET) specific surface area of 680 m2 g−1 and a large pore volume of 1.06 cm3 g−1 following surfactant extraction as demonstrated by X-ray diffraction (XRD), Transmission electron microscope (TEM), and physical adsorption techniques. Based on BET surface area and weight loss, the surface coverage of amino-groups for the amino-functionalized mesoporous silica thin films is calculated to be 3.2 amino-groups per nm2. Moreover, the functionalized thin films display improved properties for immobilization of cytochrome c in comparison with pure-silica mesoporous thin films.  相似文献   

11.
New ordered mesoporous carbons containing nickel oxide nanoparticles have been successfully synthesized by carbonization of sucrose in the presence of nickel acetate inside SBA-15 mesoporous silica template. The obtained samples were characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, and transmission electron microscopy (TEM). The NiO nanoparticles were embedded inside the mesoporous carbon framework due to the simultaneous pyrolysis of nickel acetate during carbonization. The electrochemical testing of the as-made nanocomposites showed a large specific capacitance of 230 F g−1 using 2 M KOH as the electrolyte at room temperature. This is attributed to the nanometer-sized NiO formed inside mesoporous carbons and the high surface area of the mesopores in which the NiO nanoparticles are formed. Furthermore, the synthetic process is proposed as a simple and general method for the preparation of new functionalized mesoporous carbon materials, for various applications in catalysis, sensor or advanced electrode material.  相似文献   

12.
Highly ordered mesoporous silica can be regenerated from a mesoporous carbon CMK-3 that is a negative replica of mesoporous silica SBA-15, indicating reversible replication between carbon and inorganic materials.  相似文献   

13.
This work shows that mesoporous polymeric films with spherical and elliptical pores can be obtained by in situ structure inversion of the azo polymer colloid arrays through selective interaction with solvent. The epoxy-based azo polymer contained both the pseudo-stilbene-type azo chromophores and the hydrophilic carboxyl groups. The colloidal spheres of the azo polymer were prepared by gradual hydrophobic aggregation of the polymeric chains in THF-H2O media, induced by a steady increase in the water content. Ordered 2D arrays of the hexagonally close-packed colloidal spheres were obtained by the vertical deposition method. After the solvent (THF) annealing, the ordered 2D arrays were directly transformed to mesoporous films through the sphere-pore inversion. Under the same condition, the 2D arrays composed of the ellipsoidal colloids, which were obtained by the irradiation of a polarized Ar+ laser beam on the colloidal sphere arrays, could be transformed to films with ordered elliptical pores. To our knowledge, this is the first example to demonstrate that mesoporous structures can be directly formed from the colloidal arrays of a homopolymer through structure inversion. This observation can shed new light on the nature of self-assembly processes and provide a feasible approach to fabricate mesoporous structures without the infiltration-removal step. By exploring the photoresponsive properties of the materials, mesoporous film with special pore structure and properties can be expected.  相似文献   

14.
Mesoporous carbons were synthesized from polyacrylonitrile (PAN) using ordered and disordered mesoporous silica templates and were characterized using transmission electron microscopy (TEM), powder X-ray diffraction, nitrogen adsorption, and thermogravimetry. The pores of the silica templates were infiltrated with carbon precursor (PAN) via polymerization of acrylonitrile from initiation sites chemically bonded to the silica surface. This polymerization method is expected to allow for a uniform filling of the template with PAN and to minimize the introduction of nontemplated PAN, thus mitigating the formation of nontemplated carbon. PAN was stabilized by heating to 573 K under air and carbonized under N2 at 1073 K. The resulting carbons exhibited high total pore volumes (1.5-1.8 cm3 g(-1)), with a primary contribution of the mesopore volume and with relatively low microporosity. The carbons synthesized using mesoporous templates with a 2-dimensional hexagonal structure (SBA-15 silica) and a face-centered cubic structure (FDU-1 silica) exhibited narrow pore size distributions (PSDs), whereas the carbon synthesized using disordered silica gel template had broader PSD. TEM showed that the SBA-15-templated carbon was composed of arrays of long, straight, or curved nanorods aligned in 2-D hexagonal arrays. The carbon replica of FDU-1 silica appeared to be composed of ordered arrays of spheres. XRD provided evidence of some degree of ordering of graphene sheets in the carbon frameworks. Elemental analysis showed that the carbons contain an appreciable amount of nitrogen. The use of our novel infiltration method and PAN as a carbon precursor allowed us to obtain ordered mesoporous carbons (OMCs) with (i) very high mesopore volume, (ii) low microporosity, (iii) low secondary mesoporosity, (iv) large pore diameter (8-12 nm), and (v) semi-graphitic framework, which represent a desirable combination of features that has not been realized before for OMCs.  相似文献   

15.
Highly ordered mixed framework mesoporous cubic (Im3m) thin films of (M(1-x)(Si-R)(x))O(2) bearing organic groups (M = Ti or Zr, R = propylamine, propylthiol or phenyl, x < or = 0.2) are obtained by one-pot dip-coating; a second organic function (R' = hexadecyl, phenyl, thiol) can be added by post-grafting with a molecule presenting a group capable to anchor to the M sites, thus leading to bifunctional accessible mesopores.  相似文献   

16.
17.
Ordered mesoporous silica with macroscopic shape has been prepared with a hybrid template of gel and poly(ethylene oxide)106–poly(propylene oxide)70–poly(ethylene oxide)106 (pluronic F127) surfactant, where both water-soluble agar gel and pluronic F127 significantly affect the mesoporous structure and morphology of silica. The thermal analysis revealed the noticeable interaction between agar and F127, which contributes to the formation of homogenous hybrid template. In the hybrid template, agar gel contributed to the maintenance of morphology structure, while F127 was responsible for the formation of ordered porous structure in silica solids.  相似文献   

18.
The currently available microwave technology permits the development and implementation of a temperature-programmed microwave-assisted synthesis (TPMS) of ordered mesoporous silicas (OMSs). Unlike in previously reported syntheses of OMSs, in which only the final hydrothermal treatment was carried out under microwave irradiation, this work takes advantage of the existing capabilities of modern microwave systems to program the temperature and time for the entire synthesis of these materials. To demonstrate the flexibility of the proposed microwave-assisted synthesis, besides programming two consecutive steps involving initial stirring of the gel at a lower temperature and static hydrothermal treatment at a higher temperature, we explored the possibility of temperature programming of the latter step. A major advantage of microwave technology is the feasibility of temperature and time programming, which has been demonstrated by the synthesis of one of the most popular OMSs, SBA-15, over an unprecedented range of temperatures from 40 to 200 degrees C. Since the synthesis of OMSs has not yet been explored and reported at temperatures exceeding 150 degrees C, this work is focused on the SBA-15 samples prepared at higher temperatures (such as 160, 180, and even 200 degrees C). These SBA-15 samples show better thermal stability than those synthesized at commonly used temperatures either under conventional or microwave conditions. Moreover, a partial decomposition of the template during high-temperature microwave-assisted syntheses does not compromise the formation of well-ordered SBA-15 materials. This study shows that the simplicity and capability of temperature and time programming in TPMS allows one not only to tune the adsorption and structural properties of OMSs but also to easily screen a wide range of conditions in order to optimize and scale-up their preparation as well as to significantly reduce the time of synthesis from days to hours.  相似文献   

19.
Ordered mesoporous zirconium phosphate films were prepared on a silicon substrate by spin coating using a mixture of zirconium isopropoxide, triethyl phosphate, Pluronic P123 triblock copolymer, nitric acid, ethanol, and water. The spin-on film was consecutively treated with vapors of phosphoric acid and ammonia. The post-vapor treatments effectively enhanced the thermal stability of an ordered mesostructure when heated to 500 degrees C. XRD and TEM analyses show that the calcined zirconium phosphate film has a hexagonal structure with straight channels parallel to the film surface. The zirconium phosphate film exhibited high proton conductivity of 0.02 S/cm parallel to the film surface at 80% RH and 25 degrees C.  相似文献   

20.
有序中孔纳米多晶TiO~2薄膜的Li^+嵌脱行为   总被引:4,自引:0,他引:4  
傅正文  罗骞  张伟  赵东元  秦启宗 《化学学报》2000,58(10):1226-1229
以三嵌段高分子非离子表面活性剂为结构导向剂,在非水条件下,合成了具有均一孔径分布(6.5nm)、高比表面积的稳定的中孔纳米多晶TiO~2薄膜。用循环伏安与电位阶跃技术研究了薄膜的Li^+离子嵌入反应。结果表明,由非离子表面活性剂导向而成的中孔TiO~2薄膜具有较大的Li^+离子嵌入容量,伏安特性中双电层电容效应非常显著,Li^+离子在脱嵌过程中电荷传递系数在0.15~0.4之间,嵌入系数为(4.7~55)×10^-^1^2cm^2/s。这些结果显示了具有大的比表面中孔TiO~2薄膜具有不同一般Li^+离子嵌入TiO~2薄膜的电化学反应特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号