首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nonlinear lattice — a new and nonlinear class of periodic potentials — was recently introduced to generate various nonlinear localized modes. Several attempts failed to stabilize two-dimensional (2D) solitons against their intrinsic critical collapse in Kerr media. Here, we provide a possibility for supporting 2D matter-wave solitons and vortices in an extended setting — the cubic and quintic model — by introducing another nonlinear lattice whose period is controllable and can be different from its cubic counterpart, to its quintic nonlinearity, therefore making a fully “nonlinear quasi-crystal”.A variational approximation based on Gaussian ansatz is developed for the fundamental solitons and in particular, their stability exactly follows the inverted Vakhitov–Kolokolov stability criterion, whereas the vortex solitons are only studied by means of numerical methods. Stability regions for two types of localized mode — the fundamental and vortex solitons — are provided. A noteworthy feature of the localized solutions is that the vortex solitons are stable only when the period of the quintic nonlinear lattice is the same as the cubic one or when the quintic nonlinearity is constant, while the stable fundamental solitons can be created under looser conditions. Our physical setting (cubic-quintic model) is in the framework of the Gross–Pitaevskii equation or nonlinear Schrödinger equation, the predicted localized modes thus may be implemented in Bose–Einstein condensates and nonlinear optical media with tunable cubic and quintic nonlinearities.  相似文献   

2.
王莹  宗丰德  李峰波 《中国物理 B》2013,22(3):30315-030315
We predict three-dimensional vortex solitons in a Bose-Einstein condensate under a complex potential which is the combination of a two-dimensional parabolic trap along the transverse radial direction and a one-dimensional optical-lattice potential along the z axis direction. The vortex solitons are built in the form of layer-chain structure made up of several fundamental vortices along the optical-lattice direction, which were not reported before in the three-dimensional Bose-Einstein condensate. By using the combination of the energy density functional method with the direct numerical simulation, we find three-dimensional vortex solitons with topological charge χ=1, χ=2, and χ=3. Moreover, the macroscopic quantum tunneling and the chirp phenomena of the vortex solitons are shown in the evolution. Thereinto, the occurrence of the macroscopic quantum tunneling provides a possibility for the realization of the quantum tunneling in experiment. Specifically, we manipulate the vortex solitons along the optical lattice direction successfully. The stability limits for dragging the vortex solitons from an initial fixed position to a prescribed location are further pursued.  相似文献   

3.
We address the existence of vortex solitons supported by azimuthally modulated lattices and reveal how the global lattice discrete symmetry has fundamental implications on the possible topological charges of solitons. We set a general "charge rule" using group-theory techniques, which holds for all lattices belonging to a given symmetry group. Focusing on the case of Bessel lattices allows us to derive also an overall stability rule for the allowed vortex solitons.  相似文献   

4.
光诱导光子晶格结构中新型的离散空间光孤子   总被引:4,自引:0,他引:4  
陈志刚  许京军  楼慈波 《物理》2005,34(1):12-17
离散孤子标志着从线性到非线性,从连续到非连续,从相干到非相干,人们对孤子认识的一个飞越.文章简要回顾了近期在二维光致光子晶格结构中有关空间离散光孤子的研究,包括基模离散孤子、类矢量离散孤子、离散偶极孤子、离散涡旋孤子和离散孤子串等.在非线性光折变晶体里用部分相干光诱导的波导阵列中,对每一种离散孤子,都清楚地观测到光从二维的离散衍射状态到自囚禁形成离散孤子的转变过程,获得的结果将对其他离散非线性系统中类似现象的研究有所启发.  相似文献   

5.
We show that localized gain supports the existence of dissipative vortex solitons in periodic Kerr media with strong two-photon absorption. Vortex solitons exist in both focusing and defocusing media, with their propagation constants emerging from semi-infinite or finite gaps in the lattice spectrum. Coincidence of the discrete rotational symmetries of the gain landscape and refractive index distribution is a necessary condition for exciting vortex solitons, which otherwise transform into stable dissipative multipoles.  相似文献   

6.
We investigate the formation of high-order polarization vortex spatial solitons. The high-order polarization vortex solitons have novel polarization states which are different from fundamental polarization vortex solitons and have rotational symmetry only in intensity. It is proved that the polarization vortex solitons cannot carry vortex phase. The existence domain and dynamical characteristic of these high-order polarization vortex solitons in Bessel optical lattices are discussed in detail.  相似文献   

7.
We reveal the existence of asymmetric vortex solitons in ideally symmetric periodic lattices and show how such nonlinear localized structures describing elementary circular flows can be analyzed systematically using the energy-balance relations. We present the examples of rhomboid, rectangular, and triangular vortex solitons on a square lattice and also describe novel coherent states where the populations of clockwise and anticlockwise vortex modes change periodically due to a nonlinearity-induced momentum exchange through the lattice. Asymmetric vortex solitons are expected to exist in different nonlinear lattice systems, including optically induced photonic lattices, nonlinear photonic crystals, and Bose-Einstein condensates in optical lattices.  相似文献   

8.
Vortex solitons with a ring vortex core residing in a single lattice site in the semi-infinite gap of square optical lattices are reported. These solitons are no longer bound states of the Bloch-wave unit (Bloch-wave distribution in one lattice site) at the band edge of the periodic lattice, and consequently they do not bifurcate from the corresponding band edge. For saturable nonlinearity, one family of such solitons is found, and its existing curve forms a closed loop, which is very surprising. For Kerr nonlinearity, two families of such vortex solitons are found.  相似文献   

9.
Polarization vortex spatial optical solitons in Bessel optical lattices   总被引:1,自引:0,他引:1  
We investigate the formation of polarization vortex spatial optical solitons in optical lattice induced by a non-diffracting Bessel beam. The properties of these solitons in zeroth-order and first-order Bessel lattices with focusing and defocusing Kerr nonlinearity are discussed. It is found that these solitons have some analogies with phase vortex solitons carrying single positive or negative topological charge in these lattices. Besides, these polarization vortex solitons have complicated dynamical characteristic and can be stabilized in some parameter region.  相似文献   

10.
We report on the first experimental observation of discrete vortex solitons in two-dimensional optically induced photonic lattices. We demonstrate strong stabilization of an optical vortex by the lattice in a self-focusing nonlinear medium and study the generation of the discrete vortices from a broad class of singular beams.  相似文献   

11.
Two-dimensional vector vortex solitons in harmonic optical lattices are investigated. The stability properties of such solitons are closely connected to the lattice depth V0. For small V0, vector vortex solitons with the total zero-angular momentum are more stable than those with the total nonzero-angular momentum, while for large V0, this case is inversed. If V0 is large enough, both the types of such solitons are stable.  相似文献   

12.
We report the first observation of stationary necklacelike solitons. Such necklace structures were realized when a high-order vortex beam was launched appropriately into a two-dimensional optically induced photonic lattice. Our theoretical results obtained with continuous and discrete models show that the necklace solitons resulting from a charge-4 vortex have a pi phase difference between adjacent "pearls" and are formed in an octagon shape. Their stability region is identified.  相似文献   

13.
陈海军  张耀文 《物理学报》2014,63(22):220303-220303
利用变分法和数值计算方法研究了空间调制作用下Bessel型光晶格中玻色-爱因斯坦凝聚体系中孤立子的稳定性, 给出了存在随空间非周期变化的线性Bessel型光晶格和非线性光晶格(原子之间非线性相互作用的空间调制)时, 各种参数组合下涡旋和非涡旋孤立子的稳定性条件. 首先, 利用圆对称的高斯型试探波函数得出描述体系稳定性参数满足的Euler-Lagrange方程和变分法分析体系稳定性所需要的有效作用势能的表达式. 然后, 根据有效作用势能是否具有局域最小值判断体系是否具有稳定状态, 得出体系具有稳定状态时参数所满足的条件. 最后, 利用有限差分法求解Gross-Pitaevskii方程验证变分法结果的正确性, 所得结果和变分法结果一致. 关键词: Bessel型光晶格 非线性光晶格 孤立子 稳定性  相似文献   

14.
Stable ring-profile vortex solitons in bessel optical lattices   总被引:1,自引:0,他引:1  
Stable ring-profile vortex solitons, featuring a bright shape, appear to be very rare in nature. However, here we show that they exist and can be made dynamically stable in defocusing cubic nonlinear media with an imprinted Bessel optical lattice. We find the families of vortex solitons and reveal their salient properties, including the conditions required for their stability. We show that the higher the soliton topological charge, the deeper the lattice modulation necessary for stabilization.  相似文献   

15.
We study the dynamics of bright solitons formed in a Bose-Einstein condensate with attractive atomic interactions perturbed by a weak bichromatic optical lattice potential. The lattice depth is a biperiodic function of time with a zero mean, which realizes a flashing ratchet for matter-wave solitons. We find that the average velocity of a soliton and the soliton current induced by the ratchet depend on the number of atoms in the soliton. As a consequence, soliton transport can be induced through scattering of different solitons. In the regime when matter-wave solitons are narrow compared to the lattice period the dynamics is well described by the effective Hamiltonian theory.  相似文献   

16.
Changming Huang 《中国物理 B》2021,30(12):124204-124204
We investigate the properties of fundamental, multi-peak, and multi-peaked twisted solitons in three types of finite waveguide lattices imprinted in photorefractive media with asymmetrical diffusion nonlinearity. Two opposite soliton self-bending signals are considered for different families of solitons. Power thresholdless fundamental and multi-peaked solitons are stable in the low power region. The existence domain of two-peaked twisted solitons can be changed by the soliton self-bending signals. When solitons tend to self-bend toward the waveguide lattice, stable two-peaked twisted solitons can be found in a larger region in the middle of their existence region. Three-peaked twisted solitons are stable in the lower (upper) cutoff region for a shallow (deep) lattice depth. Our results provide an effective guidance for revealing the soliton characteristics supported by a finite waveguide lattice with diffusive nonlocal nonlinearity.  相似文献   

17.
We investigate the formation of fundamental discrete solitons and dipole-mode gap solitons in triangular photonic lattices imprinted in photorefractive nonlinear media. These lattices are strongly affected by the photorefractive anisotropy, resulting in orientation-dependent refractive index structures with reduced symmetry. It is demonstrated that two different orientations of the lattice wave enable the formation of fundamental discrete solitons in the total internal reflection gap. Furthermore, it is shown that one lattice orientation additionally supports dipole-mode solitons in the Bragg reflection gap. The experimental results are corroborated by numerical simulations using the full anisotropic model. PACS 42.65.Tg; 42.65.Wi; 42.70.Qs  相似文献   

18.
We investigate the stability properties of optical solitons in a chirped PT-symmetric lattice whose frequency changes in the transverse direction. Linear-stability analysis together with the direct propagation simulations demonstrates that the chirped lattice can improve the stability of optical solitons dramatically. The instability of fundamental solitons can be completely suppressed if the chirp rate exceeds a critical value. A broad stability area of dipole solitons appears if the lattice is appropriately chirped. Thus, we propose an effective way to suppress the instability of solitons in PT-symmetric potentials.  相似文献   

19.
The optical vortex interferometer uses a regular lattice of the optical vortices. In the previous papers we showed that changes in vortex lattice geometry can be related to physical quantities of the object being measured. The accuracy of such a measurement depends strongly on the precision of vortex point localization (vortex points are points where wavefront phase is undetermined). In this paper we compared the measurements of object wave tilt calculated from different localization methods applied to real interferograms and evaluate various localization methods.  相似文献   

20.
We demonstrate experimentally the formation of polychromatic single- and double-charge optical vortex solitons by employing a lithium niobate crystal as a nonlinear medium with defocusing nonlinearity. We study the wavelength dependence of the vortex core localization and observe self-trapping of polychromatic vortices with a bandwidth spanning over more than 70 nm for single-charge and 180 nm for double-charge vortex solitons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号