首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of soluble trinuclear copper(I) and silver(I) complexes containing bicapped diynyl ligands, [M(3)(micro-dppm)(3)(micro(3)-eta(1)-C triple bond CC triple bond CR)(2)]PF(6) (M = Cu, R = Ph, C(6)H(4)-CH(3)-p, C(6)H(4)-OCH(3)-p, (n)C(6)H(13), H; M = Ag, R = Ph, C(6)H(4)-OCH(3)-p), has been synthesized and their electronic, photophysical, and electrochemical properties studied. The X-ray crystal structures of [Cu(3)(micro-dppm)(3)(micro(3)-eta(1)-C triple bond CC triple bond CPh)(2)]PF(6) and [Cu(3)(micro-dppm)(3)(micro(3)-eta(1)-C triple bond CC triple bond CH)(2)]PF(6) have been determined.  相似文献   

2.
A novel heterobimetallic alkynyl-bridged complex, [Re(bpy)(CO)(3)(C[triple bond]C[bond]C(6)H(4)[bond]C[triple bond]C)Fe(C(5)Me(5))(dppe)], 1, and its oxidized species, [Re(bpy)(CO)(3)(C[triple bond]C[bond]C(6)H(4)[bond]C[triple bond]C)Fe(C(5)Me(5))(dppe)][PF(6)], 2, have been synthesized and their X-ray crystal structures determined. A related vinylidene complex, [Re(bpy)(CO)(3)(C[triple bond]C[bond]C(6)H(4)[bond](H)C[double bond]C)Fe(C(5)Me(5))(dppe)][PF(6)], 3, has also been synthesized and characterized. The cyclic voltammogram of 1 shows a quasireversible reduction couple at -1.49 V (vs SCE), a fully reversible oxidation at -0.19 V, and a quasireversible oxidation at +0.88 V. In accord with the electrochemical results, density-functional theory calculations on the hydrogen-substituted model complex Re(bpy)(CO)(3)(C[triple bond]C[bond]C(6)H(4)[bond]C[triple bond]C)Fe(C(5)H(5))(dHpe) (Cp = C(5)H(5), dHpe = H(2)P[bond](CH(2))(2)[bond]PH(2)) (1-H) show that the LUMO is mainly bipyridine ligand pi* in character while the HOMO is largely iron(II) d orbital in character. The electronic absorption spectrum of 1 shows low-energy absorption at 390 nm with a 420 nm shoulder in CH(2)Cl(2), while that of 2 exhibits less intense low-energy bands at 432 and 474 nm and additional low-energy bands in the NIR at ca. 830, 1389, and 1773 nm. Unlike the related luminescent rhenium(I)-alkynyl complex [Re(bpy)(CO)(3)(C[triple bond]C[bond]C(6)H(4)[bond]C[triple bond]C[bond]H)], 4, complex 1 is found to be nonemissive, and such a phenomenon is attributed to an intramolecular quenching of the emissive d pi(Re) --> pi*(bpy) (3)MLCT state by the low-lying MLCT and LF excited states of the iron moiety. Interestingly, switching on of the luminescence property derived from the d pi(Re) --> pi*(bpy) (3)MLCT state can be demonstrated in the oxidized species 2 and the related vinylidene analogue 3 due to the absence of the quenching pathway.  相似文献   

3.
4.
Ring-closing alkene metatheses of trans,trans-(C6F5)(Ph2P-Z-CH=CH2)2Pt(C[triple bond]C)4Pt(Ph2P-Z-CH=CH2)2(C6F5) (Z = (CH2)9, (CH2)4O(CH2)2), followed by hydrogenation, give the title compounds; the former exhibits an exceptionally twisted conformation, and the latter establishes that functional groups can be incorporated into the flexible sp3 chain.  相似文献   

5.
Excited-state dynamics in fac-[Re(CO)(3)(Me(4)phen)(cis-L)](+) (Me(4)phen = 3,4,7,8-tetramethyl-1,10-phenanthroline, L = 4-styrylpyridine (stpy) or 1,2-bis(4-pyridyl)ethylene (bpe)) were investigated by steady-state and time-resolved techniques. A complex equilibrium among three closely lying excited states, (3)IL(cis-L), (3)MLCT(Re→Me(4)phen), and (3)IL(Me(4)phen), has been established. Under UV irradiation, cis-to-trans isomerization of coordinated cis-L is observed with a quantum yield of 0.15 in acetonitrile solutions. This photoreaction competes with radiative decay from (3)MLCT(Re→Me(4)phen) and (3)IL(Me(4)phen) excited states, leading to a decrease in the emission quantum yield relative to the nonisomerizable complex fac-[Re(CO)(3)(Me(4)phen)(bpa)](+) (bpa = 1,2-bis(4-pyridyl)ethane). From temperature-dependent time-resolved emission measurements in solution and in poly(methyl methacrylate) (PMMA) films, energy barriers (ΔE(a)) for interconversion between (3)MLCT(Re→Me(4)phen) and (3)IL(Me(4)phen) emitting states were determined. For L = cis-stpy, ΔE(a) = 11 (920 cm(-1)) and 15 kJ mol(-1) (1254 cm(-1)) in 5:4 propionitrile/butyronitrile and PMMA, respectively. For L = cis-bpe, ΔE(a) = 13 kJ mol(-1) (1087 cm(-1)) in 5:4 propionitrile/butyronitrile. These energy barriers are sufficient to decrease the rate constant for internal conversion from higher-lying (3)IL(Me(4)phen) state to (3)MLCT(Re→Me(4)phen), k(i) ? 10(6) s(-1). The decrease in rate allows for the observation of intraligand phosphorescence, even in fluid medium at room temperature. Our results provide additional insight into the role of energy gap and excited-state dynamics on the photochemical and photophysical properties of Re(I) polypyridyl complexes.  相似文献   

6.
The reaction of Ru3(CO)12 with tetramethyltrifluoromethylcyclopentadiene at various ratios of the reagents was studied. Refluxing of Ru3(CO)12 with a sixfold excess of tetramethyltrifluoromethylcyclopentadiene in octane in an inert atmosphere gave a complex, which is, according to X-ray diffraction data, a dimer,trans-[Ru(η5-C5Me4CF3)(CO)2]2. The reaction under the same conditions but starting from Ru3(CO)12 and C5Me4CF3H in 2∶1 molar ratio gave a hexaruthenium cluster [Ru63-H)(η24-CO)2(μ-CO)(Co)125-C5Me4CF2)], which was characterized by IR as well as1H,13C, and19F NMR spectroscopy. According to X-ray diffraction data, an Ru4 tetrahedron, in which two edges are bound by additional “briding” Ru atoms, constitutes the frame of this compound. This complex has one (η5-C5Me4CF3) ligand, as well as one (μ3-H) and two (η24-CO) groups. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 507–512, March, 1998.  相似文献   

7.
Summary The bimetallic complexes [IrH(AuPPh3)(dppe)2]X(X=Cl, BPh4, PF6 or BF4) and [IrH(AuPPh3)(CO)(PPh3)3] PF6 have been synthesized from the corresponding neutral iridium phosphine hydrides and [AuCl(PPh3)]. The molecular structure of the latter compounds, determined by single-crystal x-ray crystallography, consists of an octahedrally co-ordinated iridium atom and an almost linear P–Au–Ir–P arrangement. The Au–Ir distance is 2.6628(4) Å. The position of the hydride ligand was located in the x-ray structural analysis and istrans to the carbonyl group, which is consistent with the i.r. and n.m.r. spectral data.  相似文献   

8.
The 16e(-) derivative [Ru(eta3-2-C3H4Me)(CO)(dppf)][SbF6] catalyzes: (i) the propargylic substitution reaction of 1,1-diphenyl-2-propyn-1-ol with alcohols to produce propargylic ethers, and (ii) the formal isomerization of 1,1-diphenyl-2-propyn-1-ol into 3,3-diphenyl-2-propenal.  相似文献   

9.
《Chemical physics letters》1987,134(5):497-501
Polarized absorption spectra of neat single-crystal [Ru(bpy)3](PF6)2 at 300 and 5 K are presented. The spectra show pronounced vibronic structure and it is possible to assign the vibrations to known Raman frequencies. Furthermore, the different electronic states corresponding to the vibronic transitions are identified and assigned. The assignment of the lowest excited states - observed in absorption - agrees with an earlier classification of the emitting states. In particular, the Ec-polarized transition A'1 ⇌ 2E' (classified in D'3), at 17816 cm−1, is found at the same energy (experimental error: ± 1 cm−1) in emission and absorption and represents a zero-phonon, zero-vibron transition. The low-energy part of the E¦¦c-polarized spectrum (below ≈ 24000 cm−1) is not dominated by a series of different electronic states but by a 1600 cm−1 progression with zero-vibron transition at 18770 cm−1.  相似文献   

10.
The structure of a novel metallamacrocyclic phosphine gold(I) thiolate cluster, [Au9(mu-dppm)4(mu-p-tc)6](PF6)3, where dppm = bis(diphenylphosphine)methane and p-tc = p-thiocresolate, is reported and shows AuAu attractions of approximately 3.0 A and gold(I) atoms linked to thiolate and phosphine ligands in distorted trigonal and nearly linear geometries.  相似文献   

11.
A series of halogenated, partially fluorinated tolans of general formula p-X-C6H4-C[triple bond]C-C6F5[X=I (1), Br (2), Cl (3), F (4)] and p-X-C6F4-C[triple bond]C-C6H5[X=I (5), Br (6)] have been prepared via palladium-catalysed Sonogashira cross-coupling, or for X=Cl (7), by nucleophilic aromatic substitution reactions. The single-crystal X-ray structures of 1-3 and 5-6 have been determined. The structures reveal that the molecular packing is characterized by either arene-perfluoroarene interactions (3), or halogen-halogen interactions (isomorphous 1 and 2), or neither (isomorphous 5 and 6). The structure of represents the first fully determined crystal structure of a compound that contains a halogen atom other than fluorine, in which arene-perfluoroarene interactions are present.  相似文献   

12.
合成了Ru(bpy)2(phen)(PF6)2 和Ru(bpy)(phen)2(PF6)2 (bpy和phen分别为2,2′-联吡啶和1,10 -邻菲咯啉)两种电化学发光物质,以 1HNMR谱研究这两种配合物的立体结构,利用 1H - 1HCOSY(同核相关谱)核磁共振技术详细分析并归属了它们的氢谱峰。  相似文献   

13.
The reaction of [PPN](2)[Re(6)C(CO)(19)] with Mo(CO)(6) and Ru(3)(CO)(12) under sunlamp irradiation provided the new mixed-metal clusters [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)] and [PPN](2)[Re(6)C(CO)(18)Ru(CO)(3)], which were isolated in yields of 85% and 61%, respectively. The compound [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)] crystallizes in the monoclinic space group P2(1)/c with a = 20.190 (7) ?, b = 16.489 (7) ?, c = 27.778 (7) ?, beta = 101.48 (2) degrees, and Z = 4 (at T = -75 degrees C). The cluster anion is composed of a Re(6)C octahedral core with a face capped by a Mo(CO)(4) fragment. There are three terminal carbonyl ligands coordinated to each rhenium atom. The four carbonyl ligands on the molybdenum center are essentially terminal, with one pair of carbonyl ligands (C72-O72 and C74-O74) subtending a relatively large angle at molybdenum (C72-Mo-C74 = 147.2(9) degrees ), whereas the remaining pair of carbonyl ligands (C71-O71 and C73-O73) subtend a much smaller angle (C71-Mo-C73 = 100.5(9) degrees ). The (13)C NMR spectrum of (13)CO-enriched [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)] shows signals for four sets of carbonyl ligands at -40 degrees C, consistent with the solid state structure, but the carbonyl ligands undergo complete scrambling at ambient temperature. The (13)C NMR spectrum of (13)CO-enriched [PPN](2)[Re(6)C(CO)(18)Ru(CO)(3)] at 20 degrees C is consistent with the expected structure of an octahedral Re(6)C(CO)(18) core capped by a Ru(CO)(3) fragment. The visible spectrum of [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)] shows a broad, strong band at 670 nm (epsilon = 8100), whereas all of the absorptions of [PPN](2)[Re(6)C(CO)(18)Ru(CO)(3)] are at higher energy. An irreversible oxidation wave with E(p) at 0.34 V is observed for [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)], whereas two quasi-reversible oxidation waves with E(1/2) values of 0.21 and 0.61 V (vs Ag/AgCl) are observed for [PPN](2)[Re(6)C(CO)(18)Ru(CO)(3)]. The molybdenum cap in [Re(6)C(CO)(18)Mo(CO(4))](2-) is cleaved by heating in donor solvents, and by treatment with H(2), to give largely [H(2)Re(6)C(CO)(18)](2-). In contrast, [Re(6)C(CO)(18)Ru(CO)(3)](2-) shows no tendency to react under similar conditions.  相似文献   

14.
The reaction of copper(I) iodide with tri-m-tolylphosphine (m-tolyl(3)P) in acetonitrile yielded the cluster [Cu(6)(mu2-I)(mu3-I)4(mu4-I)(m-tolyl(3)P)4(CH(3)CN)2] (1), with a bicapped adamantoid geometry. In this compound, four Cu atoms are coordinated to four terminally bonded m-tolyl(3)P ligands, two Cu atoms are bonded to two CH(3)CN ligands, and iodide ligands have mu2-I, mu3-I, and mu4-I bonding modes. This compound has four CuI(3)P and two CuI(3)N cores, and geometry around each Cu center is distorted tetrahedral.The polarizable iodide ligand and the position of the methyl group in the phenyl ring attached to the P atom appear to have played the pivotal role in the formation of monomeric bicapped adamantoid geometry, which is unique in copper chemistry.  相似文献   

15.
Solvated iron(II)‐tris(bipyridine) ([FeII(bpy)3]2+) has been extensively studied with regard to the spin crossover (SCO) phenomenon. Herein, the ultrafast spin transition dynamics of single crystal [FeII(bpy)3](PF6)2 was characterized for the first time using femtosecond transient absorption (TA) spectroscopy. The single crystal environment is of interest for experiments that probe the nuclear motions involved in the SCO transition, such as femtosecond X‐ray and electron diffraction. We found that the TA at early times is very similar to what has been reported in solvated [FeII(bpy)3]2+, whereas the later dynamics are perturbed in the crystal environment. The lifetime of the high‐spin state is found to be much shorter (100 ps) than in solution due to chemical pressure exerted by the lattice. Oscillatory behavior was observed on both time scales. Our results show that single crystal [FeII(bpy)3](PF6)2 serves as an excellent model system for localized molecular spin transitions.  相似文献   

16.
Several new ruthenium(II) complexes containing 8-(dimethylphosphino)quinoline (Me(2)Pqn) were synthesized, and their structures and electrochemical/spectroscopic properties have been investigated. In addition to the mono(Me(2)Pqn) complex [Ru(bpy or phen)(2)(Me(2)Pqn)](PF(6))(2) (1 or 1'; bpy = 2,2'-bipyridine; phen = 1,10-phenanthroline), the geometrical isomers trans(P)- and C(1)-[Ru(bpy)(Me(2)Pqn)(2)](PF(6))(2) (tP-2 and C(1)-2) and mer- and fac-[Ru(Me(2)Pqn)(3)](PF(6))(2) (m-3 and f-3) were also selectively synthesized and isolated. It was found that complexes tP-2 and m-3 were converted quantitatively to the corresponding C(1)-2 and f-3 isomers, respectively, by irradiation of light corresponding to the MLCT transition energy. The strong trans influence of the Me(2)P- donor group of Me(2)Pqn was confirmed by the X-ray structural analyses for 1, tP-2, m-3, and f-3. Cyclic voltammetry of a series of complexes, [Ru(bpy)(3)](PF(6))(2), 1, C(1)-2, and f-3, exhibited a reversible one-electron oxidation wave and two or three one-electron reduction waves. The oxidation potentials of the complexes gave a large positive shift with increasing number of coordinated Me(2)Pqn molecules, indicating a larger pi-acceptability of the Me(2)P- group compared with bpy or qn. Complex f-3 in EtOH/MeOH (4:1) glass at 77 K exhibited an intense long-lived (tau = 920 microseconds) emission arising from the quinoline-based (3)(pi-pi) excited state. In contrast, the mixed-ligand complexes 1, 1', and C(1)-2 showed a characteristic dual emission, giving a double-exponential emission decay, and the dual emission originates from both the bpy-based (3)MLCT and the quinoline-based (3)(pi-pi) emitting states.  相似文献   

17.
We report a high yield, two-step synthesis of fac-[Ru(bpy)(CH3CN)3NO2]PF6 from the known complex [(p-cym)Ru(bpy)Cl]PF6 (p-cym = eta(6)-p-cymene). [(p-cym)Ru(bpy)NO2]PF6 is prepared by reacting [(p-cymene)Ru(bpy)Cl]PF6 with AgNO3/KNO2 or AgNO2. The 15NO2 analogue is prepared using K15NO2. Displacement of p-cymene from [(p-cym)Ru(bpy)NO2]PF6 by acetonitrile gives [Ru(bpy)(CH3CN)3NO2]PF6. The new complexes [(p-cym)Ru(bpy)NO2]PF6 and fac-[Ru(bpy)(CH3CN)3NO2]PF6 have been fully characterized by 1H and 15N NMR, IR, elemental analysis, and single-crystal structure determination. Reaction of [Ru(bpy)(CH3CN)3NO2]PF6 with the appropriate ligands gives the new complexes [Ru(bpy)(Tp)NO2] (Tp = HB(pz)3-, pz = 1-pyrazolyl), [Ru(bpy)(Tpm)NO2]PF6 (Tpm = HC(pz)3), and the previously prepared [Ru(bpy)(trpy)NO2]PF6 (trpy = 2,2',6',2' '-terpyridine). Reaction of the nitro complexes with HPF6 gives the new nitrosyl complexes [Ru(bpy)TpNO][PF6]2 and [Ru(bpy)(Tpm)NO][PF6]3. All complexes were prepared with 15N-labeled nitro or nitrosyl groups. The nitro and nitrosyl complexes were characterized by 1H and 15N NMR and IR spectroscopy, elemental analysis, cyclic voltammetry, and single-crystal structure determination for [Ru(bpy)TpNO][PF6]2. For the nitro complexes, a linear correlation is observed between the nitro 15N NMR chemical shift and 1/nu(asym), where nu(asym) is the asymmetric stretching frequency of the nitro group.  相似文献   

18.
Reductive electrocrystallization at a constant current density (11.0–11.5 μA/cm2) of millimolar solutions of [M(bpy)3](PF6)2, where M = Fe, Ru, or Os, and bpy = 2,2′-bipyridine in acetonitrile containing 0.1M Bu4NPF6 results in the formation of dark crystals on the Pt cathode. The crystals grow as long, thin, and shiny needles having a hexagonal cross section of 0.1–0.5 mm in diameter. Combustion microanalyses results are consistent with the composition for [Fe(bpy)3], [Ru(bpy)3], and [Os(bpy)3]. In addition, the chromophores are conserved, as confirmed by recording both the electronic and the 1H-NMR spectra after reoxidation of the electrocrystals in humid air. The spectra are identical to those for authentic samples of [Fe(bpy)3]2+, [Ru(bpy)3]2+, and [Os(bpy)3]2+. A ratio of 2.0 ± 0.1 e?/molecule is observed upon completion of the controlled potential electrolysis of a solution of [M(bpy)3]2+, which results in the precipitation of a dark solid and the almost complete fading of the color of the original solution. Unexpectedly, the crystals do not exhibit an ESR signal. These data indicate the formation of novel materials, crystalline [Fe(bpy)3], [Ru(bpy)3], and [Os(bpy)3].  相似文献   

19.
Crystal Structures of [Et3PNAsPh3]2[Ag2Br4] and [Et3PNAsPh3]2[Pd2Br6] Colourless single crystals of [Et3PNAsPh3]2[Ag2Br4]( 1 ) and red single crystals of [Et3PNAsPh3]2[Pd2Br6]( 2 ) have been isolated from saturated solutions in acetonitrile of equivalent mixtures of [Et3PNAsPh3]Br with AgBr and PdBr2, respectively. Both complexes were characterized by IR spectroscopy and by crystal structure determinations. 1 : Space group P1¯, Z = 1, lattice dimensions at ‐70°C: a = 985.0(2), b = 1042.2(5), c = 1345.8(5) pm, α = 102.88(2)°, β = 105.73(2)°, γ = 94.94(2)°, R1 = 0.0577. 2 : Space group P21/c, Z = 2, lattice dimension at ‐70°C: a = 1003.0(1), b = 1371.8(2), c = 1974.0(1) pm, β = 93.30(1)°, R1 = 0.0458. The dimeric anions of 1 and 2 form planar, centrosymmetric complex units.  相似文献   

20.
Synthesis and Structure of [(Ph3PAu)6Co(CO)2](PF6) and [(Ph3PAu)7Co(CO)2](PF6)2 By the reaction of (Ph3PAu)4Co[(CO)3]+ with OH? in the presence of excess Ph3PAuCl the larger cluster cations [(Ph3PAu)6Co(CO)2]+ ( 1 ) and [(Ph3PAu)7Co(CO)2]2+ ( 2 ) can be built up with 1 being the main product. 1 crystallizes with PF?6 as counterion in the monoclinic space group C2/c with a = 3008.3(6); b = 1339.1(2); c = 2909.4(6) pm; β = 103.08(1)°; Z = 4. The inner core of the cluster cation 1 with the symmetry C2 has the form of a bicapped trigonal bipyramid with the heteroatom in equatorial position, and distances Au? Au between 280.4(1) and 288.4(1) pm and Co? Au between 254.9(1) and 257.1(2) pm. 2 · (PF6)2 crystallizes in the triclinic space group P1 with a = 2155.7(1); b = 1720.6(1); c = 3543.6(1) pm; α = 91.89(1)°; β = 97.51(1); γ = 89.92(1)°; Z = 4. The unit cell contains two symmetry independent cluster cations 2 of about the same geometry. The cluster skeleton Au7Co can be described as fragment of an icosahedron formed by seven gold atoms with the Co atom in its center. The Au? Au distances range from 274.8(3) to 332.6(3) pm, and the Co? Au distances are 256.8(6) to 264.7(5) pm. The bonding in 1 and 2 is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号