首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ab initio HF/6-31+G*, MP2/6-31+G*, B3LYP/6-31+G* level calculations have been performed on HSe-NH2 to estimate the Se-N rotational barriers and N-inversion barriers. Two conformers have been found withsyn andanti arrangement of the NH2 hydrogens with respect to Se-H bond. The N inversion barriers in selenamide are 1.65, 2.47, 1.93 kcal/mol and the Se-N rotational barriers are 6.58, 6.56 and 6.12 kcal/mol respectively at HF/6-31+G*, MP2/6-31+G* and B3LYP/6-31+G* levels respectively. The nNΣ *Se-H negative hyperconjugation is found to be responsible for the higher rotational barriers.  相似文献   

2.
Urban  J.  Nowek  A.  Venkatraman  R.  Babinec  P.  Leszczynski  J. 《Structural chemistry》1998,9(3):161-167
The structure and conformational stability of ethyl pseudohalides CH3CH2 — XCN (X = O, S, Se) were investigated using ab initiocalculations at the MP2 level of theory with a triple- basis set augmented with polarization and diffusion functions. Full optimization was performed on the minimum energy structures as well as on the transition state forms. The relative stabilities of rotational conformers were calculated at the MP4 level using MP2 optimized reference geometries. The nature of all considered stationary points was verified by calculation of the harmonic vibrational frequencies. The calculated bond lengths, bond angles, dipole moments, and rotational constants of optimized global minima structures agree very well with the corresponding experimental data obtained from microwave spectroscopic studies. Also, available experimental frequencies are in good accord with the theoretical values. For ethyl cyanate CH3CH2 — OCN, the antiperiplanar (trans) form is predicted to be more stable than the synclinal (gauche) form, and the synperiplanar (cis) form corresponds to the transition state. For both ethyl thiocyanate CH3CH2 — SCN and ethyl selenocyanate CH3CH2 — SeCN, the gaucheform is the global minimum while the trans-conformer is a local minimum and the cis-form is a transition state.  相似文献   

3.
The He1 photoelectron (PE) spectra of both 2(5H) furanone and itstrans-chair-dimeric-compound (t-c-DFN) are reported. The assignment of the PES bands is made on the basis of band shapes, the PES results of the molecules which have the similar atomic groups, and the restricted Hartree-Fock (RHF) calculations for the molecules studied. From the results of both PES experimental and theoretical calculations, it is proved that the ionization potential (IPS) of the HOMO for the dimeric-compound is lower than that of the HOMO for the monomer. And the total energy computed for thet-c-DFN is the lowest in the four possible configurations of dimeric-compounds of 2(5H) furanone. Therefore the synthesis oft-c-DFN is also the easiest. Project supported by the National Natural Science Foundation of China.  相似文献   

4.
The energies and thermodynamic parameters of elementary steps in the proposed mechanism of silicon tetrafluoride hydrolysis in the gas phase were calculated by the ab initio quantum-chemical method (MP4//MP2/6-311G(2d,2p)) and the density functional theory (B3LYP/6-311G(2d,2p)). The proposed mechanism of gas-phase hydrolysis involves the formation of mono- and dihydroxy derivatives, hexafluorodisiloxane (SiF3OSiF3), and linear and cyclic siloxane polymers with the chain length from three to six Si—O and difluorosilanone units. According to the calculations, all reactions considered are endothermic and are characterized by positive Gibbs free energies. The initial hydrolysis steps can be presented with a high accuracy by two parallel processes: formation of trifluorohydroxysilane (SiF3OH) and SiF3OSiF3. These are the most thermodynamically favorable among all reaction channels. The transition states of these elementary steps were found and their kinetic parameters were estimated (G = 132 and 147 kJ mol–1, respectively). The calculation results were verified using FTIR spectroscopy of a mixture of gas-phase SiF4 and water vapor. The comparison of the theoretical (absolute) intensities of bands in the IR spectra and integral absorption coefficients in the experimental IR spectrum made it possible to calculate the equilibrium concentrations of the reactants and equilibrium constants of elementary steps of formation of SiF3OH and SiF3OSiF3, which agree with the theoretical values. The role of different derivatives in deep hydrolysis and possibilities of experimental detection of particular intermediates in the gas phase were discussed.  相似文献   

5.
6.
The photoelectron and IR spectra of a number of sulfenamide derivatives and their H-complexes have been investigated, A correlation between an increase in the vertical ionization potential of the lone electron pair of the nitrogen atom and a decrease in the frequency shift of the stretching OH-vibrations in the H-complexes of compounds R3N, R2NCH2OR, R2NSR, and R2NSOR was found. The electronic and geometric structures of the starting bases and their H-complexes were calculated by theab initio and MNDO methods. Anomeric interactions were found to decrease the energy of the n(N) orbital and to hinder the formation of H-complexes. The calculations of the sulfenamides and their H-complexes in unstable conformations, characterized by increased energies of H-complexation and proton affinity, were also carried out.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2894–2897, December, 1996.  相似文献   

7.
The molecular vibrations of xanthine were investigated in polycrystalline sample, at room temperature by Fourier transform infrared (FTIR) and FT-Raman spectroscopies. The spectra of the molecule have been recorded in the regions 4000-50 cm(-1) and 3500-100 cm(-1), respectively. Theoretical information on the optimized geometry, harmonic vibrational frequencies, infrared and Raman intensities were obtained by means of ab initio Hartree-Fock (HF) and density functional theory (DFT) gradient calculations with complete relaxation in the potential energy surface using 6-311++G(d,p) basis set. The vibrational frequencies which were determined experimentally from the spectral data are compared with those obtained theoretically from ab initio and DFT calculations. A close agreement was achieved between the observed and calculated frequencies by refinement of the scale factors. The infrared and Raman spectra were also predicted from the calculated intensities. Thermodynamic properties like entropy, heat capacity, zero point energy have been calculated for the molecule. Unambiguous vibrational assignment of all the fundamentals was made using the potential energy distribution (PED).  相似文献   

8.
X-ray photoelectron and voltammetry studies of the charged state of the metal atom in nickel(II) chelate complexes with ligands containing CS 2 and PS 2 groups and in heteroligand complexes on their basis were carried out. It is shown that the degree of formal oxidation of the nickel atom in the complexes corresponds to Ni(II). In the case of heteroligand complexes, addition of nitrogen heterocycles causes an increase in the electron density on the atoms of the coordination center. Theoretical data obtained in ab initio quantum chemical model calculations correlate with the experimental results. Original Russian Text Copyright ? 2005 by L. N. Mazalov, S. V. Trubina, I. M. Oglezneva, N. A. Kryuchkova, O. V. Tarasenko, V. L. Varand, T. E. Kokina, and S. V. Larionov __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 46, No. 3, pp. 554–557, May–June, 2005.  相似文献   

9.
The relationship between the structure of carbofunctionally substituted 1-methylsilatranes XCH2Si(OCHRCH2)3N (R = H, Me; X = R"2N, R"S, Cl, etc., R" = Alk), the unusually high electron-releasing properties of the silatranyl group, and the enhanced chemical reactivity of the exocyclic XCH2 substituent is discussed.  相似文献   

10.
A first principle quantum chemical method for determining the shape of molecules has been elaborated and its value in interpreting the experimentally found shape selectivity in isopropylation of isopropylnaphthalene on H-mordenite zeolite is demonstrated. In line with experimental results, it is found that 2,6-diisopropylnaphthalene is the most feasible product since it diffuses through the main channels of mordenite the easiest among the possible isomers.  相似文献   

11.
孙政  郑世钧  王殿勋 《化学学报》2000,58(12):1645-1648
本文详细报道了SiBr~4的紫外光电子能谱(PES)及该化合物不同离子态(X^2T~2,A^2T~1,B^2E,C^2T~2等)的电子结构和性质。实验测得对应基态离子态的绝热电离能I~a(X^2T~2←X^1A~1)=10.532eV,X^2T~2离子态的振动频率为(450±30)cm^-^1。结合理论计算对紫外光电子能谱进行了指认和分析,结果表明X^2T~2,A~2T~1两个离子态存在明显的自旋-轨道耦合作用,自旋-轨道耦合导致的分裂分别为:0.27ev和0.53eV。此外,不同计算方法比较显示外层格林函数方法计算得到电离能与实验吻合很好。  相似文献   

12.
The geometrical structure and conformation of dimethyloxalate, CH3OC(O)–C(O)OCH3, have been studied by gas electron diffraction (GED) and quantum-chemical calculations (MP2 and B3LYP methods with 6-31G* and cc-pVTZ basis sets). The GED analysis with a dynamic model (T = 323 K) results in a mixture of two planar conformers, anti (C2h symmetry) and syn (C2v symmetry) orientation of the two C=O bonds. The energy difference between these conformers is 0.02(0.18) kcal/mol and barrier to internal rotation around the C–C bond is 0.44(0.41) kcal/mol. The CH3 groups occupy synperiplanar positions with respect to the C=O bonds. The following main geometrical parameters for the anti conformer (Å and degrees) have been derived: rg(C–C) = 1.532(3), rg(C=O) = 1.203(2), rg(Csp3–O) = 1.436(3), rg(Csp2–O) = 1.333(3), (Csp2–Csp2–O) = 111.9(1.9), (Csp2–O–Csp3) = 116.3(1.6), (O–C= O) = 127.0(1.8).This paper is devoted to the 75th anniversary of gas electron diffraction method.  相似文献   

13.
The geometry of silatrane HSi(OCH2CH2)3N has been determined by gas electron diffraction, ab initio calculations, and vibrational spectroscopy of crystal. Using the scaled force field from DFT calculations the amplitudes and perpendicular corrections were calculated. It was assumed that the silatrane molecule has C 3 symmetry. The following values (r g bond lengths in Å and a bond angles in deg. with three standard deviations from the least-squared refinements using a diagonal weight matrix) are: SiN 2.406(27); NC 1.443(7); OC 1.399(11); SiO 1.648(3); CC 1.504(15); NSiO 78.8(21); SiOC 128.1(11); SiNC 105.4(14); CCO 117.0(26); CCN 108.2(30); CNC 113.2(17); OSiO 116.3(13). The 5-membered rings are flattened. The sum of its bond angles is equal to 537.5(42). It is shown that a very large difference is found for Si—N distance from ab initio and DFT calculating.  相似文献   

14.
The high resolution X-ray emission O-Kα spectra of pentafluorophenylalkyl ethers C6F5OR (R=Et, Pri, and But) exhibit differences related to a change in the electronic structure of the compounds as R is varied. The search for stable conformers was performed by the semiempirical PM3 method. The most probable structures of C6F5OR were determined by the comparison of the experimental and theoretical X-ray spectra plotted for each conformer usingab initio calculations in the 6–31 G basis set. Substituent R in pentafluorophenylalkyl ethers is situated outside of the ring plane. The fluorination of the benzene ring changes the energy level of the lone electron pair of oxygen relative to the levels of orbitals of the ring and substituent R and leads to an increase in the efficiency of interactions in the σ-system. Deceased. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2443–2450, December, 1998.  相似文献   

15.
Ab initio molecular orbital calculations using the STO3-21G basis set has been carried out for the cluster series Na n + , Na n , and Na n (wheren=2–7). The basis set is shown to be reliable compared with more extensive basis sets at the Hartree-Fock level. Thirty-one optimized structures are reported and discussed, many of which (especially for the anions) have not been considered. The STO3-21G//STO3-21G calculations suggest that for most of the species the optimum geometries are planar. In particular, the optimized structures for the anionic species should provide a starting point for more sophisticated configuration interaction calculations.  相似文献   

16.
Ab initio molecular orbital calculations using the STO-6G and STO6-21G basis sets have been performed for the cluster series Li n + , Li n , and Li n (wheren=2–7). Thirty-two optimized structures are discussed and reported, many of which (especially for the anionic structures) have not yet been considered. The calculations suggest that for all three species the optimum geometries are planar. Of the two levels of theories that were investigated, STO-6G//STO-6G and STO6-21G//STO-6G, the latter hybrid theory was found to be less reliable. In particular, for the anionic structures these calculations should provide a platform from which more sophisticated, i.e., configuration interaction, geometry optimization can be performed.  相似文献   

17.
We review our theoretical work done on a variety of different chemical systems, which show different H-bonding characteristics. The systems include water clusters, its interactions with polar molecules and π-systems, organic nanotubes, enzymes, and ionophores/receptors. Special features of normal, short, short strong, and π-type H-bonding interactions in these systems are discussed in terms of structures, interaction energies, and spectra.  相似文献   

18.
Various possible isomers of LiSiF3 system and isomerization between them have been studied at G2(MP2) level usingab initio calculations. The relative energies of four minimum points on the potential energy surface are-128.6,-194.3,-12.7 and-122.8 kJ/mol (taking the sum of the energies of LiF and SiF2 as zero). The structural energy of the four-membered ring that contains three F-Si-F-Li four-membered rings with C3v symmetry is the lowest. The highest potential barrier for the isomerization of the remaining three- or four-membered structure is 12.5 kJ/ mol. Project supported by the National Natural Science Foundation of China (Grant No. 29673026).  相似文献   

19.
Ab initio calculations with full optimization of geometry have been carried out with the 6–31 G* basis set on tetrafluoroethylene (with the unrestricted Hartree-Fock method—UHF and the second-order Moller-Plesset perturbation theory—MP2) and tetratrifluoromethylethylene (with UHF) molecules in the singlet ground and triplet biradical states. The symmetry of the tetrafluoroethylene molecule in the triplet biradical state was demonstrated to differ from that of ethylene (D 2d ) due to the deviation of fluorine atoms from CCFF plane. The MP2 optimized geometries of ethylene and tetrafluoroethylene were used for higher level calculations (MP3, MP4, CCSD). The energy of the ground state singlet-biradical triplet splitting decreases in the series: ethylene>tetrafluoroethylene> tetratrifluoromethylethylene. These data on energy splitting explain the increase in reactivity toward the [2+2]-cycloaddition on going from ethylene to tetrafluoroethylene. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 605–607, April, 1998.  相似文献   

20.
The electronic structure and reactivity of some S—S dications were studied at the MP2/6-31G* level of theory. The results obtained indicate a stepwise electrophilic addition of disulfonium dication moiety to the double C=C bond to be the preferable mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号