首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The efficient synthesis of various diborylalkenes such as 1,1-, trans-1,2-, and cyclic 1,2-diborylalkenes from alkenes and diboron was achieved for the first time. Selective preparation of di- and monoborylalkenes was also realized by the appropriate choice of reaction conditions. The reaction was found to proceed via a new mechanism of dehydrogenative borylation through a monoborylpalladium complex bearing an anionic PSiP-pincer ligand as a key intermediate, which realized the efficient borylation without sacrificial hydroboration or hydrogenation of the alkene.  相似文献   

2.
Novel catalytic activation of the B-B bond by palladium(II)-NHC complexes in presence of a mild base (NaOAc) and an excess of diboron reagent enables chemoselective 1,2-diboration of alkenes, suggesting the heterolytic cleavage of diboron rather than oxidative addition of a B-B bond to the metal.  相似文献   

3.
Internal and terminal alkynes undergo rapid platinum(0)-catalyzed diboration with bis(pinacolato)diboron in dioxane to yield cis-1,2-bis(boryl)alkenes under sealed vessel microwave conditions. Subsequent addition of aryl bromides, base and a palladium catalyst to the reaction vial followed by resubjection to microwave conditions provides tetrasubstituted ethylenes in high yields via Suzuki cross-coupling of the boron intermediates.  相似文献   

4.
The first regiodivergent oxyboration of unactivated terminal alkenes is reported, using copper alkoxide as a catalyst, bis(pinacolato)diboron [(Bpin)2] as a boron source, and (2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl (TEMPO) as an oxygen source. The reaction is compatible with various functional groups. Two regioisomers are selectively produced by selecting the appropriate ligands on copper. The products may be used as a linchpin precursor for various other functionalizations, and net processes such as carbooxygenation, aminooxygenation, and dioxygenation of alkenes can be achieved after C?B bond transformations. Mechanistic studies indicate that the reaction involves the following steps: 1) Transmetalation between CuOtBu and (Bpin)2 to generate a borylcopper species; 2) regiodivergent borylcupration of alkenes; 3) oxidation of the thus‐generated C?Cu bond to give an alkyl radical; 4) trapping of the resulting alkyl radical by TEMPO.  相似文献   

5.
A series of crystalline sp3‐sp3 diboron(4) compounds were synthesized and shown to promote the facile reduction of water with dihydrogen formation. The application of these diborons as simple and effective dihydrogen and dideuterium sources was demonstrated by conducting a series of selective reductions of alkynes and alkenes, and hydrogen–deuterium exchange reactions using two‐chamber reactors. Finally, as the water reduction reaction generates an intermediate borohydride species, a range of aldehydes and ketones were reduced by using water as the hydride source.  相似文献   

6.
A series of crystalline sp3‐sp3 diboron(4) compounds were synthesized and shown to promote the facile reduction of water with dihydrogen formation. The application of these diborons as simple and effective dihydrogen and dideuterium sources was demonstrated by conducting a series of selective reductions of alkynes and alkenes, and hydrogen–deuterium exchange reactions using two‐chamber reactors. Finally, as the water reduction reaction generates an intermediate borohydride species, a range of aldehydes and ketones were reduced by using water as the hydride source.  相似文献   

7.
Metal-catalyzed borylation of alkenes, alkynes, arenes, and organic halides with B-B or H-B compounds has been developed for the synthesis of organoboron compounds from simple organic substrates. The platinum(0)-catalyzed addition of bis(pinacolato)diboron to alkenes and alkynes provided a method for the stereoselective synthesis of cis-bis(boryl)alkanes or cis-bis(boryl)alkenes. The addition of diboron to 1,3-dienes with platinum(0) complexes provided a new access to cis-1,4-bis(boryl)-2-butene derivatives, which are versatile reagents for diastereoselective allylboration of carbonyl compounds. The first one-step procedure for the syntheses of aryl-, vinyl-, and allylboronates was achieved via crosscoupling reactions of diborons with aryl and 1-alkenyl halides or triflates and allyl acetates. Direct C-H borylation of arenes catalyzed by a transition metal complex was studied as an economical protocol for the synthesis of a variety of arylboron derivatives. Ir-catalyzed C-H borylation of arenes, heteroarenes, and benzylic positions of alkylarenes by bis(pinacolato)diboron or pinacolborane furnished aryl-, heteroaryl-, and benzylboron compounds. This article discusses the mechanisms of these reactions and their synthetic applications.  相似文献   

8.
Vyas R  Gao GY  Harden JD  Zhang XP 《Organic letters》2004,6(12):1907-1910
[reaction: see text] Iron(III) porphyrin complexes Fe(Por)Cl are effective catalysts for aziridination of alkenes using bromamine-T as the nitrene source. The catalytic system can operate under mild conditions with alkenes as limiting reagents. The aziridination reaction is general and suitable for a wide variety of alkenes, including aromatic, aliphatic, cyclic, and acyclic olefins, as well as alpha,beta-unsaturated esters. For 1,2-disubstituted olefins, the reactions proceeded with moderate to low stereospecificity.  相似文献   

9.
An intriguing aerobic oxidation of alkynes through copper catalysis is described, in which bis(pinacolato)diboron (B2pin2) played a dominant intermediary role in the formation 1,2-diketones. This novel protocol, which can be performed at room temperature, is versatile for various substituted alkynes, including diarylalkynes and arylalkylalkynes. The mechanism of this reaction was preliminarily investigated by control experiments.  相似文献   

10.
A helping hand: A series of bis(oxazoline) ligands, which contain pendant C(2) -symmetry-breaking groups, for the Cu-catalyzed asymmetric cyclopropanation of 1,2-disubstituted alkenes has been developed. Under mild reaction conditions, both cis- and trans-1,2-substituted alkenes can be converted into the corresponding 1,2,3-trisubstituted cyclopropanes with high levels of diastereo- and enantioselectivity.  相似文献   

11.
A three-component coupling of vinyl triflates and boronic acids to alkenes catalyzed by palladium is reported. Using 1,3-dienes, selective 1,2-alkene difunction-alization is observed, whereas the use of terminal alkenes results in 1,1-alkene difunctionalization. The reaction outcome is attributed to the formation of stabilized, cationic Pd-π-allyl intermediates to regulate β-hydride elimination.  相似文献   

12.
A novel copper‐catalyzed regiodivergent alkylboration of alkenes with bis(pinacolato)diboron and alkyl halides has been developed. The regioselectivity of the alkylboration was controlled by subtle differences in the ligand structure. The reaction thus enables the practical, regiodivergent synthesis of two different alkyl boronic esters with complex structures from a single alkene.  相似文献   

13.
The detailed mechanism for the diboration of aldehydes catalyzed by (NHC)Cu(boryl) complexes (NHC = N-heterocyclic carbene) was studied with the aid of DFT by calculating the relevant intermediates and transition states. The results show that the catalyzed diboration occurs through aldehyde insertion into Cu-B to give a Cu-O-C(boryl) species followed by sigma-bond metathesis with a diboron reagent. It is the "electron-richness", that is, the nucleophilicity of the Cu-boryl bond, which gives rise to a small insertion barrier and determines the direction of insertion. The results of our calculations also explain the formation of the product, observed experimentally, from the stoichiometric reaction of (IPr)Cu-Bpin (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) with mesitylaldehyde. In the absence of a diboron reagent, the insertion intermediate having a Cu-O-C(boryl) linkage isomerizes to the thermodynamically preferred Cu-C-O(boryl) isomer via a boryl migration to the metal-bonded oxygen through an S(E)2-like transition state. We have also studied the catalyzed diboration of 2-pyridinecarboxaldehyde, which gives the unexpected reductive coupling product 1,2-di-2-pyridyl-1,2-bis(pinacolboroxy)ethane. The insertion intermediate, which contains a coordinated pyridyl group, isomerizes easily to a 1,2-dihydropyridine form, preventing its metathesis with a diboron reagent to give the expected diboration product as observed for other aldehyde substrates.  相似文献   

14.
A cobalt-catalyzed reductive coupling of terminal alkynes, RC?CH, with activated alkenes, R'CH?CH(2) , in the presence of zinc and water to give functionalized trans-disubstituted alkenes, RCH?CHCH(2) CH(2) R', is described. A variety of aromatic terminal alkynes underwent reductive coupling with activated alkenes including enones, acrylates, acrylonitrile, and vinyl sulfones in the presence of a CoCl(2) /P(OMe)(3) /Zn catalyst system to afford 1,2-trans-disubstituted alkenes with high regio- and stereoselectivity. Similarly, aliphatic terminal alkynes also efficiently participated in the coupling reaction with acrylates, enones, and vinyl sulfone, in the presence of the CoCl(2) /P(OPh)(3) /Zn system providing a mixture of 1,2-trans- and 1,1-disubstituted functionalized terminal alkene products in high yields. The scope of the reaction was also extended by the coupling of 1,3-enynes and acetylene gas with alkenes. Furthermore, a phosphine-free cobalt-catalyzed reductive coupling of terminal alkynes with enones, affording 1,2-trans-disubstituted alkenes as the major products in a high regioisomeric ratio, is demonstrated. In the reactions, less expensive and air-stable cobalt complexes, a mild reducing agent (Zn) and a simple hydrogen source (water) were used. A possible reaction mechanism involving a cobaltacyclopentene as the key intermediate is proposed.  相似文献   

15.
Cu‐catalyzed alkylboration of alkenes with bis(pinacolato)diboron ((Bpin)2) and alkyl halides provides a ligand‐controlled regioselectivity‐switchable method for the construction of complex boron‐containing compounds. Here, we employed DFT methods to elucidate the mechanistic details of this reaction and the origin of the different regioselectivity induced by Xantphos and Cy‐Xantphos. The calculation results reveal that the catalytic cycle mainly proceeds through the migratory insertion of alkenes on Cu‐Bpin complex, the oxidative addition of alkyl halides, and the reductive elimination of a C?C bond. Meanwhile, the rate‐ determining step is the oxidative addition of alkyl halides and the regioselectivity‐determining step is the migratory insertion of alkenes. The bulky cyclohexyl group of Cy‐Xantphos facilitates the approach of the substituents of alkenes to Bpin in the migratory insertion step and thus leads to the Markovnikov products. The less bulky phenyl group on Xantphos prefers keeping the substituents of alkenes away from the Bpin moiety in the migratory insertion step and thus results in anti‐Markovnikov products.  相似文献   

16.
An efficient synthesis of trisubstituted alkenes including 1,2-heterodisubstituted alkenes has been described. Reactions of thiols and amines with 1,1-dibromo-1-alkenes in the presence of TBAF·3H(2)O afford (Z)-2-bromovinyl sulfides and (Z)-2-bromovinyl amines regio- and stereoselectively. The reaction proceeds under catalyst-free conditions with high efficiency. The coupling reactions of the obtained products bearing bromine atoms with phenylacetylene and phenylboronic acid gave trisubstituted alkenes in good to excellent yields. Cross-coupling with various N, O, S, and P nucleophiles selectively generated 1,2-N,O, 1,2-N,S, 1,2-S,P, 1,2-S,S, and 1,2-S,O heterodisubstituted alkenes.  相似文献   

17.
Organocuprate(I) reagents are now being widely used for highly selective substitution reactions1 with alkyl,2 alkenyl,2 aryl,2 and acyl3 halides and with α,α'-dihaloketones.4 Organocopper interaction with 1,2-dihaloalkanes is of interest because two main reaction pathways may be expected: (a) replacement of both halogens by organic groups and (b) reductive elimination of halogen to form alkenes.5 We report here that various types of 1,2-dibromides react with lithium dialkyl-cuprate(I) reagents under exceedingly mild conditions to give alkenes exclusively (Eq. 1).  相似文献   

18.
1,2-Dioxygenation of alkenes leads to a structural motif ubiquitous in organic synthons, natural products and active pharmaceutical ingredients. Straightforward and green synthesis protocols starting from abundant raw materials are required for facile and sustainable access to these crucial moieties. Especially industrially abundant aliphatic alkenes have proven to be arduous substrates in sustainable 1,2-dioxygenation methods. Here, we report a highly efficient electrocatalytic diacetoxylation of alkenes under ambient conditions using a simple iodobenzene mediator and acetic acid as both the solvent and an atom-efficient reactant. This transition metal-free method is applicable to a wide range of alkenes, even challenging feedstock alkenes such as ethylene and propylene, with a broad functional group tolerance and excellent faradaic efficiencies up to 87 %. In addition, this protocol can be extrapolated to alkenoic acids, resulting in cyclization of the starting materials to valuable lactone derivatives. With aromatic alkenes, a competing mechanism of direct anodic oxidation exists which enables reaction under catalyst-free conditions. The synthetic method is extensively investigated with cyclic voltammetry.  相似文献   

19.
An unprecedented oxidative arylation reaction of terminal alkenes with simple aroyl hydrazides has been developed under aerobic conditions for the stereoselective synthesis of 1,2‐disubstituted alkenes. A range of aroyl hydrazides underwent palladium/copper‐catalyzed oxidative Mizoroki–Heck reaction with terminal alkenes open to air in a 1:1 mixture of dimethyl sulfoxide and acetonitrile to give structurally diverse 1,2‐disubstituted alkenes in moderate to excellent yields with excellent regio‐ and E‐selectivity. The reaction tolerated a wide variety of functional groups, such as alkoxy, hydroxy, amino, fluoro, chloro, bromo, cyano, nitro, ester, amide, imide, phosphine oxide, and sulfone groups, and, moreover, molecular oxygen and dimethyl sulfoxide were demonstrated to serve as terminal oxidants. This study provides a useful method for the stereoselective synthesis of 1,2‐disubstituted alkenes through direct transformation of the vinylic C?H bonds in terminal alkenes.  相似文献   

20.
A reaction of benzylic alcohols with alkenes has been developed in the presence of bis(trifluoromethane)sulfonimide for the synthesis of trisubstituted alkenes and indane derivatives with high stereoselectivity.In general,benzylic alcohols react with 1,1-diaryl alkenes to afford trisubstituted alkenes,and the reaction with 1,2-disubstituted and trisubstituted alkenes affords indane derivatives through a [3 + 2] annulation reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号