首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Temperature-dependent 57Fe Mössbauer spectroscopy to 40 GPa shows that Fe3O4 magnetite undergoes a coordination crossover (CC), whereby charge density is shifted from octahedral to tetrahedral sites and the spinel structure thus changes from inverse to normal with increasing pressure and decreasing temperature. A precursor to the CC is a d-charge decoupling within the octahedral sites at the inverse-spinel phase. The CC transition takes place almost exactly at the Verwey transition temperature (TV=122 K) at ambient pressure. While TV decreases with pressure the CC-transition temperature increases with pressure, reaching 300 K at 10 GPa. The d electron localization mechanism proposed by Verwey and later by Mott for T<TV is shown to be unrelated to the actual mechanism of the metal–insulator transition attributed to the Verwey transition. It is proposed that a first-order phase transition taking place at ∼TV at ambient pressure opens a small gap within the oxygen p-band, resulting in the observed insulating state at T>TV.  相似文献   

2.
La0.7Sr0.3MnO3 films were prepared by dc sputtering on Si (100) substrate at different working pressure. The possibility of controlling the magnetic and transport properties of colossal magnetoresistance film is investigated, which has attracted great research interest for practical application. The as-grown film shows different magnetic, transport and magnetoresistance change at different working pressure at room temperature, which is quite attractive from technological point of view. Maximum magnetoresistance (MR) of ?5.56%, Curie temperature (Tc) of 325 K and metal insulator transition temperature (TMI) of 278 K was achieved at room temperature.  相似文献   

3.
Lead-free (1?x)[K0.5Na0.5NbO3]?x[LiSbO3] (x=0, 0.04, 0.05 and 0.06)/(KNN-LS) ceramics were prepared by conventional solid-state reaction route (CSSR). For dense morphology pure KNN ceramic was sintered at 1120 °C and LS modified KNN ceramics were sintered at 1080 °C for 4 h, respectively. The structural study at room temperature (RT) revealed the transformation of pure orthorhombic to tetragonal structure with the increase in LS content in KNN-LS ceramics. Temperature dependent dielectric study confirmed the increase of diffuse phase transition nature with the increase in LS content in KNN-LS ceramics. The presence of orthorhombic to tetragonal (TO?T) polymorphic phase transition temperature (PPT) ~43 °C confirmed the presence of two ferroelectric (orthorhombic and tetragonal) phases in 0.95KNN-0.05LS ceramics at RT. 0.95KNN-0.05LS ceramics showed better ferroelectric and piezoelectric properties i.e., remnant polarization (Pr)~18.7 μC/cm2, coercive field (Ec)~11.8 kV/cm, piezoelectric coefficient (d33)~215 pC/N, coupling coefficient (kp)~0.415 and remnant strain ~0.07% were obtained.  相似文献   

4.
Temperature-dependent 57Fe Mössbauer spectroscopy to 40 GPa shows that Fe3O4 magnetite undergoes a coordination crossover (CC) whereby charge-density is shifted from octahedral to tetrahedral sites and the spinel structure thus changes from inverse to normal with increasing pressure and decreasing temperature. A precursor to the CC is a d-charge decoupling within the octahedral sites at the inverse spinel phase. The CC-transition takes place almost exactly at the Verwey transition temperature (TV=122 K) at ambient pressure. While TV decreases with pressure, the CC-transition temperature increases with pressure, reaching 350 K at 10 GPa. The d electron localization mechanism proposed by Verwey and later by Mott for T<TV is shown to be unrelated to the actual mechanism of the metal–insulator transition attributed to the Verwey transition. It is proposed that a first-order phase transition taking place at ∼TV at ambient pressure opens a small gap within the oxygen p-band, resulting in the observed insulating state at T>TV.  相似文献   

5.
A first-principles density-functional-theory method has been used to reinvestigate the mechanical and dynamical stability of the metallic phase of AlH3 between 65 and 110 GPa. The electronic properties and phonon dynamics as a function of pressure are also explored. We find electron–phonon superconductivity in the cubic Pm-3n structure with critical temperature Tc = 37 K at 70 GPa which decreases rapidly with the increase of pressure. Further unlike a previously calculated Tc-value of 24 K at 110 GPa, we do not find any superconductivity of significance at this pressure which is consistent with experimental observation.  相似文献   

6.
Isoelectronic Tellurium (Te) substitution for Selenium (Se) in the tetragonal phase of FeSe (β-FeSe) increases the superconducting transition temperature (Tc) by applying a negative pressure on the lattice. However, the normal state resistivity increases and shows semi-metallic behavior for samples with higher Te concentration. With increasing Te concentration, the Tc increases and reaches a maximum for FeSe0.5Te0.5 and then decreases with further increase of Te. We have investigated the effect of Cobalt (Co) and Nickel (Ni) doping in FeSe0.5Te0.5 in the nominal composition range Fe1?xTMxSe0.5Te0.5 (TM = Co (x = 0.05, 0.1, 0.15, 0.2) and Ni (x = 0.05, 0.1)). Both Co and Ni doping suppress Tc and drives the system to metal–insulator transition. The in-plane (‘a’) and out-of-plane (‘c’) lattice constants decrease with increasing dopant concentration.  相似文献   

7.
YBa2Cu3O7?x (Y123) films with quantitatively controlled artificial nanoprecipitate pinning centers were grown by pulsed laser deposition (PLD) and characterized by transport over wide temperature (T) and magnetic field (H) ranges and by transmission electron microscopy (TEM). The critical current density Jc was found to be determined by the interplay of strong vortex pinning and thermally activated depinning (TAD), which together produced a non-monotonic dependence of Jc on c-axis pin spacing dc. At low T and H, Jc increased with decreasing dc, reaching the very high Jc  48 MA/cm2 ~20% of the depairing current density Jd at 10 K, self-field and dc  10 nm, but at higher T and H when TAD effects become significant, Jc was optimized at larger dc because longer vortex segments confined between nanoprecipitates are less prone to thermal fluctuations. We conclude that precipitates should extend at least several coherence lengths along vortices in order to produce irreversibility fields Hirr(77 K) greater than 7 T and maximum bulk pinning forces Fp,max(77 K) greater than 7–8 GN/m3 (values appropriate for H parallel to the c-axis). Our results show that there is no universal pin array that optimizes Jc at all T and H.  相似文献   

8.
9.
Magnesium diboride (MgB2) thin films were deposited on C-plane sapphire substrates by sputtering pure B and Mg targets at different substrate temperatures, and were followed by in situ annealing. A systematic study about the effects of the various growth and annealing parameters on the physical properties of MgB2 thin films showed that the substrate temperature is the most critical factor that determines the superconducting transition temperature (Tc), while annealing plays a minor role. There was no superconducting transition in the thin films grown at room temperature without post-annealing. The highest Tc of the samples grown at room temperature after the optimized annealing was 22 K. As the temperature of the substrate (Ts) increased, Tc rose. However, the maximum Ts was limited due to the low magnesium sticking coefficient and thus the Tc value was limited as well. The highest Tc, 29 K, was obtained for the sample deposited at 180 °C, annealed at 620 °C, and was subsequently annealed a second time at 800 °C. Three-dimensional (3D) AFM images clearly demonstrated that the thin films with no transition, or very low Tc, did not have the well-developed MgB2 grains while the films with higher Tc displayed the well-developed grains and smooth surface. Although the Tc of sputtered MgB2 films in the current work is lower than that for the bulk and ex situ annealed thin films, this work presents an important step towards the fabrication of MgB2 heterostructures using rather simple physical vapor deposition method such as sputtering.  相似文献   

10.
While a paper mentioned above being published on line, we have become aware of the high-pressure neutron diffraction study of squaric acid (H2C4O4) by C.L. Bull et al. They developed that neutron diffraction experiments could be performed under quasi-hydrostatic conditions to pressures of up to 18 GPa and showed that the tetragonal phase of H2C4O4 was still observed at 14.5 GPa (above the critical pressure of Pc=0.75 GPa at room temperature) beyond the previous pressure limits of 7 GPa. Taking the high-pressure neutron diffraction results into consideration, modified temperature-pressure phase diagram in the paper stated above is reported.  相似文献   

11.
Here, we report the synthesis and characterization of sulphur-substituted iron telluride i.e. FeTe1?xSx; (x = 0–30 %) system and study the impact of low temperature oxygen (O2) annealing as well. Rietveld analysis of room temperature X-ray diffraction (XRD) patterns shows that all the compounds are crystallized in a tetragonal structure (space group P4/nmm) and no secondary phases are observed. Lattice constants are decreased with increasing S concentration. The parent compound of the system i.e. FeTe does not exhibit superconductivity but shows an anomaly in the resistivity measurement at around 78 K, which corresponds to a structural phase transition. Heat capacity Cp(T) measurement also confirms the structural phase transition of FeTe compound. Superconductivity appears by S substitution; the onset of superconducting transition temperature is about 8 K for FeTe0.75S0.25 sample. Thermoelectric power measurements S(T) also shows the superconducting transition at around 7 K for FeTe0.75S0.25 sample. The upper critical fields Hc2(10%), Hc2(50%) and Hc2(90%) are estimated to be 400, 650 and 900 kOe respectively at 0 K by applying Ginzburg Landau (GL) equation. Interestingly, superconducting volume fraction is increased with low temperature (200 °C) O2 annealing at normal pressure. Detailed investigations related to structural (XRD), transport [S(T), R(T)H], magnetization (AC and DC susceptibility) and thermal [Cp(T)] measurements for FeTe1?xS:O2 system are presented and discussed.  相似文献   

12.
Magnetic susceptibility (χ) and 51V NMR have been measured in (V1−xTix)2O3 near the phase boundary of the metal–insulator transition. It is established that the transition from antiferromagnetic insulating (AFI) to antiferromagnetic metallic phases near xc≈0.05 is not quantum critical, but is discontinuous with a jump of the transition temperature. In the AFI phase at 4.2 K, we observed the satellite in the zero-field 51V NMR spectrum around 181 MHz in addition to the ‘host’ resonance around 203 MHz. The satellite is also observable in the paramagnetic metallic phase of the x=0.055 sample. We associated the satellite with the V sites near Ti, which are in the V3+-like oxidation state, but has different temperature dependence of the NMR shift from that of the host V site. The host d-spin susceptibility for x=0.055 decreases below ∼60 K, but remains finite in the low-temperature limit.  相似文献   

13.
Single crystals of undoped and 1% Zn-doped Bi-2212 are grown by self-flux slow cooling method under similar growth conditions. TcTc) are found to be 84 K (2 K) and 82 K (8 K) for undoped and doped samples respectively. Effect of Zn doping on structure and modulation is studied. Different change in the value of a- and b-axes are observed resulting in a transformation of structure from tetragonal to orthorhombic one. However, no effective change in modulation is there. Distortions are compared in c- and b-axes for undoped and doped samples. The asymmetry in position and intensity of satellite peaks has been discussed. The value of a in excess of b has been reported for the first time. These results are discussed in terms of valancy, coordinates and position of occupancy of Zn ions vis-à-vis those of Cu ions in Cu–O plane of the structure.  相似文献   

14.
The magnetic properties of a Fe2P-type intermetallic compound MnRhAs have been investigated under high pressure up to 8.0 GPa by AC susceptibility measurement. Initially, both the antiferromagnetic (AF(I)) to the canted state magnetic transition temperature Tt and the canted state to another antiferromagnetic one (AF(II)) transition temperature TC increase with compression. At 4.0 GPa, however, Tt decreases abruptly, while the increasing rate of TC becomes larger above this pressure. A pressure-induced magnetic phase transition was seen at around this pressure when Tt and TC are plotted in the pressure–temperature phase diagram. The transition from the antiferromagnetic to the ferromagnetic state observed below 160 K with increasing pressure is not frequently observed.  相似文献   

15.
The intrinsic pinning properties of FeSe0.5Te0.5, which is a superconductor with a critical temperature Tc of approximately 14 K, were studied through the analysis of magnetization curves obtained using an extended critical state model. For the magnetization measurements carried out with a superconducting quantum interference device (SQUID), external magnetic fields were applied parallel and perpendicular to the c-axis of the sample. The critical current density Jc under the perpendicular magnetic field of 1 T was estimated using the Kimishima model to be equal to approximately 1.6 × 104, 8.8 × 103, 4.1 × 103, and 1.5 × 103 A/cm2 at 5, 7, 9, and 11 K, respectively. Furthermore, the temperature dependence of Jc was fitted to the exponential law of Jc(0) × exp(?αT/Tc) up to 9 K and the power law of Jc(0) × (1 ? T/Tc)n near Tc.  相似文献   

16.
《Current Applied Physics》2010,10(2):422-427
New lead-free (Bi1−xyNdxNa1−y)0.5BayTiO3 ceramics were prepared by a conventional ceramic technique and their dielectric and piezoelectric properties were studied. X-ray diffraction studies reveal that Nd3+ and Ba2+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a new solid solution with a pure perovskite structure, and a morphotropic phase boundary (MPB) of rhombohedral and tetragonal phases is formed at 0.04 < y < 0.10. The partial substitutions of Nd3+ and Ba2+ decrease effectively the coercive field Ec and increase significantly the remanent polarization Pr. Because of lower Ec, larger Pr and the formation of the MPB, the piezoelectric properties of the ceramics are significantly enhanced at x/y = 0.02/0.06: d33 = 150 pC/N and kp = 30.5%. The ceramics exhibit relaxor characteristic, which is probably resulted from the cation disordering in the 12-fold coordination sites. The depolarization temperature Td shows a strong compositional dependence and reaches a minimum value at the MPB. The temperature dependences of the ferroelectric and dielectric properties suggest that the ceramics may contain both the polar and non-polar regions near the depolarization temperature Td, which cause the polarization hysteresis loop become deformed near/above Td.  相似文献   

17.
(Gd,Y)Ba2Cu3Ox tapes have been fabricated by metal organic chemical vapor deposition (MOCVD) with Zr-doping levels of 0–15 mol.% and Ce doping levels of 0–10 mol.% in 0.4 μm thick films. The critical current density (Jc) of Zr-doped samples at 77 K, 1 T applied in the orientation of H 6 c is found to increase with Zr content and shows a maximum at 7.5% Zr doping. The 7.5% Zr-doped sample exhibits a critical current density (Jc) of 0.95 MA/cm2 at H 6 c which is more than 70% higher than the Jc of the undoped sample. The peak in Jc at H 6 c is 83% of that at H 6 ab in the 7.5% Zr-doped sample which is more than twice as that in the undoped sample. Superconducting transition temperature (Tc) values as high as about 89 K have been achieved in samples even with 15% Zr and 10% Ce. Ce-doped samples with and without Ba compensation are found to exhibit substantially different Jc values as well as angular dependence characteristics.  相似文献   

18.
The temperature variations of the elastic constant C11 and the corresponding acoustic attenuation coefficient of barium titanate single crystals grown by two different methods in the paraelectric phase were obtained in a wide temperature by means of Brillouin light scattering. Two phenomenological approaches were adopted to attempt to explain the anomalous change in C11 (denoted as ΔC11) in the paraelectric phase. ΔC11 exhibited a logarithmic variation as log[(T ? T0)/T0] in a certain temperature range from Tc to about Tc + 80 °C instead of the other variation of (T ? T0)ζ predicted by the mean-field approach. This temperature range was almost the same as the range where precursor dynamics were theoretically predicted to set in. The fact that the logarithmic variation was proposed for uniaxial systems might indicate that the correlated deformation of precursor polar clusters is tetragonal, as was suggested from nuclear magnetic resonance study [7].  相似文献   

19.
The first-order phase transition that leads to the superionic phase in AgI-based materials is studied by dc-conductivity measurements and a free energy model. By properly adjusting the model parameters, an abrupt change of disordering concentration, Δη?, is predicted at a transition temperature, Tt. The temperature dependence of the dc-conductivity, σ(T), is well fitted to the η?(T) equilibrium configuration obtained from the trial free energy function. The reported comparative study was done using an AgI–KI modified sample. The model also predicts a transition temperature, Tc for a continuous phase transition (Δη? = 0).  相似文献   

20.
The effect of yttrium substitution at the lanthanum site on the superconducting properties of La1?xYxO0.9F0.1FeAs (‘x = 0, 0.10, 0.20, 0.30, 0.50 and 0.60) oxypnictides has been studied. Powder X-ray diffraction studies confirm single phases till x = 0.1 beyond which minor amount of Y2O3 is observed. The temperature dependence of resistivity measurements confirm the superconducting transition temperature (Tc) of 34.8 (±0.05) K and corresponding Meissner transition at 34.3 K in the ‘x = 0.3 composition which is higher than that reported for the parent phase (LaO0.9F0.1FeAs (Tc = 28 K)). Further increase in the concentration of yttrium leads to broadening and suppression of the superconducting transition. The value of Hc2 at zero temperature is estimated to be about 60.5 T. The Seebeck coefficient (S) shows a negative sign indicating that the major contribution to the conductivity is by electrons. The Hall coefficient (RH) also remains negative throughout the temperature range supporting the thermopower results. The lattice parameters (a and c) decreases and the charge-carrier density increases with yttrium doping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号