首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with the stability for a class of nonlinear composite stochastic systems by feedback laws.Firstly,we give sufficient conditions for the existence of feedback laws which render the equilibrium solution of the stochastic system globally asymptotically stable in probability.Secondly,for stochastic systems of the same type,we prove that there exists a linear feedback law which exponentially stabilizes in mean square the closed–loop stochastic system at its equilibrium.  相似文献   

2.
A frictional contact model, under the small deformations hypothesis, for static processes is considered. We model the behavior of the material by a constitutive law using the subdifferential of a proper, convex and lower semicontinuous function. The contact is described with a boundary condition involving Clarke?s generalized gradient. Our study focuses on the weak solvability of the model. Based on a fixed point theorem for set-valued mappings, we prove the existence of at least one weak solution. The uniqueness, the boundedness and the stability of the weak solution are also discussed; the investigation is based on arguments in the theory of variational–hemivariational inequalities. Finally, we present several examples of constitutive laws and friction laws for which our theoretical results are valid.  相似文献   

3.
非线性弹性动力学解的存在性   总被引:1,自引:0,他引:1  
在小变形假定的前提一下,本文证明具有一般非线性本构方程的弹性动力学系统在混合型边值约束下的解的存在性,同时在更弱的条件下可得到经典弹性动力学解的存在性.  相似文献   

4.
The goal of this paper is to establish that even for strongly non-linear Darcy's laws and strongly non-linear leaky boundary conditions on the bottom of the reservoirs the fluid flow through a porous dam is a well-posed problem for which existence of a solution can be established. In a simple case we provide also the exact solution to the problem. © 1997 B. G. Teubner Stuttgart–John Wiley & Sons Ltd.  相似文献   

5.
6.
Entropy solutions have been widely accepted as the suitable solution framework for systems of conservation laws in several space dimensions. However, recent results in De Lellis and Székelyhidi Jr (Ann Math 170(3):1417–1436, 2009) and Chiodaroli et al. (2013) have demonstrated that entropy solutions may not be unique. In this paper, we present numerical evidence that state-of-the-art numerical schemes need not converge to an entropy solution of systems of conservation laws as the mesh is refined. Combining these two facts, we argue that entropy solutions may not be suitable as a solution framework for systems of conservation laws, particularly in several space dimensions. We advocate entropy measure-valued solutions, first proposed by DiPerna, as the appropriate solution paradigm for systems of conservation laws. To this end, we present a detailed numerical procedure which constructs stable approximations to entropy measure-valued solutions, and provide sufficient conditions that guarantee that these approximations converge to an entropy measure-valued solution as the mesh is refined, thus providing a viable numerical framework for systems of conservation laws in several space dimensions. A large number of numerical experiments that illustrate the proposed paradigm are presented and are utilized to examine several interesting properties of the computed entropy measure-valued solutions.  相似文献   

7.
In this paper, we obtain conservation laws of (2+1) dimensional Calogero–Bogoyavlenskii–Schiff equation by non‐local conservation theorem method. Besides, exact solutions are obtained by the aid of the symmetries associated with conservation laws. Double reduction is used to obtain these exact solution of Calogero–Bogoyavlenskii–Schiff equation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
In this work we study the Kadomtsev–Petviashvili–Burgers equation, which is a natural model for the propagation of the two-dimensional damped waves. We show that the equation is nonlinear self-adjoint and it will become strict self-adjoint or weak self-adjoint in some equivalent form. By using Ibragimov’s theorem on conservation laws we find some conservation laws for this equation.  相似文献   

9.
《Applied Numerical Mathematics》2006,56(10-11):1450-1463
This paper deals with the dynamics of phase boundaries in a nonlinear elastic two-phase material. We consider the elasticity system in 1D and the equations of anti-plane shear motion in 2D, where effects of viscosity and capillarity are neglected. These first-order conservation laws allow to represent phase boundaries as shock-like sharp interfaces. However, in contrast to what is known for homogeneous materials, the entropy inequality does not select a unique solution, and an additional criterion, the so-called kinetic relation, is required.Based on a scheme introduced by Hou, Rosakis and LeFloch [T. Hou, Ph. Rosakis, P.G. LeFloch, A level-set approach to the computation of twinning and phase-transition dynamics, J. Comput. Phys. 150 (1999) 302–331] we focus on the numerical solution of a specific model system. Using a level-set technique to enforce the kinetic relation on the discrete level leads to a reformulation of the original system in the form of a system of conservation laws coupled to a Hamilton–Jacobi equation for each phase boundary. The numerical method for the reformulated system is constructed for unstructured meshes (in 2D), and a self-adaptive algorithm is introduced.In the 1D-case we show that the reformulated system has a solution that corresponds to exact dynamical phase boundaries of the elasticity system which obey the kinetic relation. To validate the method in 2D, we present computations on the interaction of a plane wave with a phase boundary. The efficiency of the adaptation mechanism is demonstrated by an example showing the development of microstructures by twinning.  相似文献   

10.
Kadomtsev-Pogutse equations are of great interest from the viewpoint of the theory of symmetries and conservation laws and, in particular, enable us to demonstrate their potentials in action. This paper presents, firstly, the results of computations of symmetries and conservation laws for these equations and the methods of obtaining these results. Apparently, all the local symmetries and conservation laws admitted by the considered equations are exhausted by those enumerated in this paper. Secondly, we point out some reductions of Kadomtsev-Pogutse equations to more simpler forms which have less independent variables and which, in some cases, allow us to construct exact solutions. Finally, the technique of solution deformation by symmetries and their physical interpretation are demonstrated.  相似文献   

11.
In this paper we develop a first-order system of conservation laws for finite deformation in solids, describe its characteristic structure, and use this analysis to develop a second-order numerical method for problems involving finite deformation and plasticity. The equations of mass, momentum, and energy conservation in Lagrangian and Eulerian frames of reference are combined with kinetic equations of state for the stress and with caloric equations of state for the internal energy, as well as with auxiliary equations representing equality of mixed partial derivatives of the deformation gradient. Particular attention is paid to the influence of a curl constraint on the deformation gradient, so that the characteristic speeds transform properly between the two frames of reference. Next, we consider models in rate-form for isotropic elastic-plastic materials with work-hardening, and examine the circumstances under which these models lead to hyperbolic systems for the equations of motion. In spite of the fact that these models violate thermodynamic principles in such a way that the acoustic tensor becomes nonsymmetric, we still find that the characteristic speeds are always real for elastic behavior, and essentially always real for plastic response. These results allow us to construct a second-order Godunov method for the computation of three-dimensional displacement in a one-dimensional material viewed in the Lagrangian frame of reference. We also describe a technique for the approximate solution of Riemann problems in order to determine numerical fluxes in this algorithm. Finally, we present numerical examples of the results of the algorithm.  相似文献   

12.
In this paper, we consider nonlinear multidimensional Cahn–Hilliard and Kuramoto–Sivashinsky equations that have many important applications in physics and chemistry, and a certain natural generalization of these two equations to which we refer to as the generalized Cahn–Hilliard–Kuramoto–Sivashinsky equation. For an arbitrary number of spatial independent variables, we present a complete list of cases when the latter equation admits nontrivial local conservation laws of any order, and for each of those cases, we give an explicit form of all the local conservation laws of all orders modulo trivial ones admitted by the equation under study. In particular, we show that the original Kuramoto–Sivashinsky equation admits no nontrivial local conservation laws, and find all nontrivial local conservation laws for the Cahn–Hilliard equation.  相似文献   

13.
In this work, we study the integrability aspects of the Schamel–Korteweg–de Vries equation that play an important role in studying the effect of electron trapping on the nonlinear interaction of ion‐acoustic waves by including a quasi‐potential. Lie symmetry analysis together with the simplest equation method and Kudryashov method is used to obtain exact traveling wave solutions for this equation. In addition, conservation laws are constructed using two different techniques, namely, the multiplier method and the new conservation theorem. Using the conservation laws and symmetries of the underlying equation, double reduction and exact solution were also constructed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we prove the existence and uniqueness of the solution to the one-dimensional initial-boundary value problem resulting from the Frémond thermomechanical model of structural phase transitions in shape memory materials. In this model, the free energy is assumed to depend on temperature, macroscopic deformation and phase fractions. The resulting equilibrium equations are the balance laws of (linear) momentum and energy, coupled with an evolution variational inequality for the phase fractions. Fourth-order regularizing terms in the quasi-stationary momentum balance equation are not necessary, and, as far as we know for the first time, all the non-linear terms of the energy balance equation are taken into account.  相似文献   

15.
We introduce a subsymmetry of a differential system as an infinitesimal transformation of a subset of the system that leaves the subset invariant on the solution set of the entire system. We discuss the geometric meaning and properties of subsymmetries and also an algorithm for finding subsymmetries of a system. We show that a subsymmetry is a significantly more powerful tool than a regular symmetry with regard to deformation of conservation laws. We demonstrate that all lower conservation laws of the nonlinear telegraph system can be generated by system subsymmetries.  相似文献   

16.
A vector Hamilton–Jacobi formulation of the Euler equations for fluids is studied numerically. The long term objective is to find the sensitivity of a flow with respect to a parameter, which is solution of the linearized Euler equations with Dirac singularities in the initial conditions. A Hamilton–Jacobi formulation uses integral of the primitive variable so that Dirac singularities become shocks. It is shown here that there are vector Hamilton–Jacobi formulations for any vector conservation laws and that they can be simulated numerically with packages such as GO++ which we adapted to the vector case both on structured and unstructured meshes for this purpose. To cite this article: P. Hoch, O. Pironneau, C. R. Acad. Sci. Paris, Ser. I 342 (2006).  相似文献   

17.
In this paper, we study a weakly dissipative Dullin–Gottwald–Holm equation from the viewpoint of Lie symmetry analysis. We first perform symmetry analysis and the nonlinear self-adjointness of this equation. Due to a mixed derivatives term in the equation, we need to rewrite the corresponding form Lagrangian in symmetric form to construct conservation laws. From the viewpoint, we present a general procedure of how these conserved quantities come about. Based on these conserved quantities, blow-up analysis and global existence of strong solutions are presented. Finally, we show that this equation admits a weak peakon-type solution.  相似文献   

18.
In this paper, we study the inviscid limit problem for the scalar viscous conservation laws on half plane. We prove that if the solution of the corresponding inviscid equation on half plane is piecewise smooth with a single shock satisfying the entropy condition, then there exist solutions to the viscous conservation laws which converge to the inviscid solution away fromthe shock discontinuity and the boundary at a rate of ε^1 as the viscosity ε tends to zero.  相似文献   

19.
A new general theorem, which does not require the existence of Lagrangians, allows to compute conservation laws for an arbitrary differential equation. This theorem is based on the concept of self-adjoint equations for nonlinear equations. In this paper we show that the Zakharov–Kuznetsov equation is self-adjoint and nonlinearly self-adjoint. This property is used to compute conservation laws corresponding to the symmetries of the equation. In particular the property of the Zakharov–Kuznetsov equation to be self-adjoint and nonlinearly self-adjoint allows us to get more conservation laws.  相似文献   

20.
We study the free boundary problem for the flow of a compressible isentropic inviscid elastic fluid. At the free boundary moving with the velocity of the fluid particles the columns of the deformation gradient are tangent to the boundary and the pressure vanishes outside the flow domain. We prove the local-in-time existence of a unique smooth solution of the free boundary problem provided that among three columns of the deformation gradient there are two which are non-collinear vectors at each point of the initial free boundary. If this non-collinearity condition fails, the local-in-time existence is proved under the classical Rayleigh–Taylor sign condition satisfied at the first moment. By constructing an Hadamard-type ill-posedness example for the frozen coefficients linearized problem we show that the simultaneous failure of the non-collinearity condition and the Rayleigh–Taylor sign condition leads to Rayleigh–Taylor instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号