首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A review is given to and comprehensive numerical-analytic study is carried out of the problem of steady Bingham viscoplastic flow in a plane confuser. The solution is constructed in the first approximation with the yield stress as a small parameter and the solution of the Jeffery-Hamel problem (steady radial motion of an incompressible viscous material in a plane confuser) as the zero-order approximation. The numerical analysis is based on the modified accelerated-convergence method proposed earlier by the authors. The bifurcations of the deformation pattern occurring when the parameters reach some critical values are discussed and commented on. The asymptotic boundaries of the rigid zones that appear at infinity upon perturbation of the yield stress are determined __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 4, pp. 3–45, April 2006.  相似文献   

2.
The hydrodynamic stability of Poiseuille flow of a viscoplastic fluid is investigated. The flow is shown to be stable for infinitesimal disturbances.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 152–154, November–December, 1974.In conclusion the authors thank S. A. Regirer for critical remarks.  相似文献   

3.
4.
The Alishaev model [1] is extended to the case of nonisothermal flow. Neglecting conductive heat transfer, it is shown that for the model in question in the plane of the complex potential not only are the problems linear but the decoupling of the thermal and hydrodynamic problems is also allowed. The latter is reduced to a mixed problem for an analytic function. This makes it possible to use the wellknown methods and results of the theory of limiting equilibrium pillars for isothermal flow [2–5]. It is also established that the solutions of the unsteady problems tend asymptotically to the solutions of the corresponding steady-state problems and can be obtained from the latter by simpler conversion. The effectiveness of the approach proposed is illustrated with reference to the problem of a source-sink system [1–4].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 117–122, July–August, 1990.  相似文献   

5.
6.
We present a closed solution of the boundary value problem of the theory of large elastoplastic strains concerned with the straight motions of the medium which is a layer of heavy material placed on the inclined plane with a load on its free surface. Under the conditions that the medium is incompressible, we study the conditions of the flow onset, development, and retardation. Special attention is paid to the repeated loading under which the elastoplastic boundary may enter the region with accumulated plastic strains, and the latter may decrease because of the further motion of this surface.  相似文献   

7.
The gravity field and vibration effect on the flow of a viscoplastic fluid layer along an inclined solid surface is investigated. The rheological properties of the fluid are described using the Williamson equation. The vibrations are shown to have a considerable effect on the fluid layer flow intensity and direction; in particular, they generate a considerable mean fluid flow even in the cases in which the fluid is at rest in the absence of the vibrations.  相似文献   

8.
Numerical simulations have been used to study the flow of a Bingham viscoplastic fluid around a circular cylinder in an infinite medium with negligible inertia effects. Papanastasiou's regularisation technique has been adopted to approximate the model. The case corresponding to preponderant plasticity effects has been particularly studied and convergence of the solutions examined in detail. The flow kinematics and stresses have been determined. The rigid zones have been identified and characterised. At large Oldroyd numbers, when plasticity effects become preponderant, a viscoplastic boundary layer appears around the cylinder. The characteristics of this viscoplastic boundary layer are quantified. The results are compared with existing theoretical results, concerning particularly the predictions of the viscoplastic boundary layer theory and the plasticity theory.  相似文献   

9.
In invariant tensor form, the laws of viscoplastic fluid flow are formulated for capillary and fractured media with a periodic microstructure that has orthotropic and transversely isotropic symmetry in the flow properties. An analysis of the laws of viscoplastic fluid flow in transversely isotropic and orthotropic porous and fractured media shows that in formulating the equations it is necessary to distinguish between the permeability tensor and the limiting gradient tensor, which may differ in the symmetry of the flow characteristics, and that the flow law is multivariant and admits one-, two-, and three-dimensional flows.  相似文献   

10.
Flow of Bingham plastics through straight, long tubes is studied by means of a versatile analytical method that allows extending the study to a large range of tube geometries. The equation of motion is solved for general non-circular cross-sections obtained via a continuous and one-to-one mapping called the shape factor method. In particular the velocity field and associated plug and stagnant zones in tubes with equilateral triangular and square cross-section are explored. Shear stress normal to equal velocity lines, energy dissipation distribution and rate of flow are determined. Shear-thinning and shear-thickening effects on the flow, which cannot be accounted for with the Bingham model, are investigated using the Hershey-Bulkley constitutive formulation an extension of the Bingham model. The existence and the extent of undeformed regions in the flow field in a tube with equilateral triangular cross-section are predicted in the presence of shear-thinning and shear-thickening as a specific example. The mathematical flexibility of the analytical method allows the formulation of general results related to viscoplastic fluid flow with implications related to the design and optimization of physical systems for viscoplastic material transport and processing.  相似文献   

11.
In the exact formulation, a study is made of the solution to the problem of the flow of an ideal incompressible fluid on a flat surface in a recess in the form of a half-cylinder in the direction at right angles to the flow. In the recess, the flow is assumed to have uniform vorticity, while in the exterior unbounded flow it is irrotational. On the separating streamline, the Bernoulli constant has a discontinuity of a given magnitude.  相似文献   

12.
FLOWOFAVISCOPLASTICFLUIDONAROTATINGDISKFanChun(范椿)(InstiuieofMechanics,AcademiaSinica,Beijing)(ReceivedNov.20,1992;Communicat...  相似文献   

13.
The classical Orr-Sommerfeld analysis is extended to a Maxwell fluid in fully developed Poiseuille flow between two flat plates and Couette flow between two flat plates. For the Poiseuille flow problem eigenmodes that are anti-symmetric in position are considered to augment the literature results for the symmetric eigenmodes. A shooting method with a stiff integrator, orthonormalization, and Newton-Raphson iterations on the eigenvalue are used to find the eigenvalues. The most dangerous mode is the anti-symmetric one, and both symmetric and anti-symmetric modes are more dangerous when the wave number and the Weissenberg number are large. No unstable eigenvalues are found.  相似文献   

14.
An exact solution is given for the steady flow of a Newtonian fluid occupying the halfspace past the plane z=0 uniformly rotating about a fixed normal axis (Oz). This solution is obtained in a velocity field of the form considered by Berker [2] and can be deduced as a limiting case, as h+, of the solution to the problem relative to the strip 0zh imposing at z=h either the adherence boundary conditions or the free surface conditions. Furthermore, the stability of this flow, subject to periodic disturbances of finite amplitude, is studied using the energy method and the result is compared with those corresponding to stability of flows in the strip 0zh.
Sommario In questa nota si mostra che-oltre alla calssica soluzione di von Karman [1] — esiste, per opportuni valori del gradiente di pressione all'infinito, una soluzione esatta per il moto stazionario di un fluido Newtoniano posto nel semispazio limitato dal piano z=0 uniformemente rotante attorno ad un asse ad esso perpendicolare (Oz). Tale soluzione, ottenuta sulla scia del lavoro di Berker [2], si può dedurre anche come limite, per h+, della soluzione del problema relativo alla striscia 0zh quando sul piano z=h si assegnano o le condizioni di aderenza o le condizioni di frontiera libera. Si studia poi la stabilità di tale moto rispetto a perturbazioni spazialmente periodiche di ampiezza finita col metodo dell'energia e si confronta il risultato ottenuto con quelli relativi alla stabilità dei moti nella striscia 0zh.
  相似文献   

15.
Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. i, pp. 5–10, January–February, 1988.  相似文献   

16.
Experimental investigations show that the presence in a fluid of fibers and rigid asymmetric particles leads to a greater stability of flow in tubes and lowers the turbulent frictional resistance in a certain range of Reynolds numbers [1]. In the present paper, the anisotropic structure of a fluid with additives is described by Ericksen's rheological model [2]. The parameters of the model are particularized in accordance with the paper [3] of Pilipenko, Kalinichenko, and Lemak, and in the limiting case of weak Brownian motion allowance is made for the effect of the predominant orientation of the particles and the influence of additives on the longitudinal and shear viscosity. The stability of the Poiseuille flow is considered in the linear formulation. In an anisotropic viscous fluid, an equation of Orr-Sommerfeld type has a singular point. A rule for choosing the path of integration avoiding the singular point is obtained on the basis of a generalization of the method of Dikii [4] proposed in an investigation of the stability of the flow of an ideal fluid. The results of numerical calculations of the neutral stability curve for two-dimensional perturbations are given.  相似文献   

17.
Consideration is given to the stability of planePoiseuille flow of a slightly viscoelastic fluid which has a constant viscosity and normal stress differences varying nearly with the shear rate. It is shown that the presence of elasticity lowers the criticalReynolds number at which instability occurs.  相似文献   

18.
We present the results of lattice Boltzmann (LB) simulations for the planar-flow of viscoplastic fluids through complex flow channels. In this study, the Bingham and Casson model fluids are covered as viscoplastic fluid. The Papanastasiou (modified Bingham) model and the modified Casson model are employed in our LB simulations. The Bingham number is an essential physical parameter when considering viscoplastic fluid flows and the modified Bingham number is proposed for modified viscoplastic models. When the value of the modified Bingham number agrees with that of the “normal” Bingham number, viscoplastic fluid flows formulated by modified viscoplastic models strictly reproduce the flow behavior of the ideal viscoplastic fluids. LB simulations are extensively performed for viscoplastic fluid flows through complex flow channels with rectangular and circular obstacles. It is shown that the LB method (LBM) allows us to successfully compute the flow behavior of viscoplastic fluids in various complicated-flow channels with rectangular and circular obstacles. For even low Re and high Bn numbers corresponding to plastic-property dominant condition, it is clearly manifested that the viscosity for both the viscoplastic fluids is largely decreased around solid obstacles. Also, it is shown that the viscosity profile is quite different between both the viscoplastic fluids due to the inherent nature of the models. The viscosity of the Bingham fluid sharply drops down close to the plastic viscosity, whereas the viscosity of the Casson fluid does not rapidly fall. From this study, it is demonstrated that the LBM can be also an effective methodology for computing viscoplastic fluid flows through complex channels including circular obstacles.  相似文献   

19.
In this paper, an unsteady flow of a viscoplastic fluid for simple shear flow geometry is solved numerically using two regularizing functions to overcome the discontinuity for zero shear rate of the Bingham constitutive law. The adopted models are the well-known Papanastasiou relation and one based on the error function. The numerical results are compared with the analytical solution of the same problem obtained by Sekimoto (J Non-Newton Fluid Mech 39:107–113, 1991). The analysis of the results emphasizes that the errors are much smaller in the yielded than in the unyielded region. The models approximate closer the ideal Bingham model as the regularization parameters increase. The differences between the models tend to vanish as the regularization parameters are at least greater than 105.  相似文献   

20.
A macroscopic law of flow of a viscoplastic Schwedoff-Bingham fluid through a porous medium is obtained on the basis of percolation theory with allowance for viscous and inertial losses. The asymptotics of the flow law are estimated and expressions for determining the limiting pressure gradient as a function of the microinhomogeneity parameters are given. Satisfactory qualitative agreement between the theoretical and known experimental data is observed. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 68–73, January–February, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号