首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
YFexAl12−x in the composition range 4.4⩽x⩽5 was prepared by induction melting followed by annealing in vacuum at 1270 K. Magnetization data below 150 K show complex magnetic behaviour dependent on applied field, composition and temperature. The transition temperature Tc, corresponding to the main maximum of the magnetization vs. temperature curves and below which magnetic interactions are observed for a significant fraction of the Fe atoms in the Mössbauer spectra, decreases from 180 K for x=4 down to 100 K for 4.2⩽x⩽4.7 and rises again up to 160 K for x=5. The analysis of the spectra obtained at 5 K is consistent with full occupation of the 8f sites by Fe atoms and sharing of the 8j sites by Fe and Al as deduced from the Rietveld analysis of X-ray powder diffraction data. The Mössbauer spectra further show a dependence of magnetic hyperfine fields and isomer shifts on the crystallographic site and on the number of the Fe nearest neighbours similar to that observed in UFexAl12−x (4⩽x⩽6) and RFexAl12−x (R=Y, Lu, x=4, 4.2). The magnetic properties of the UFexAl12−x and YFexAl12−x series are compared and the magnetic interactions between the different Fe sublattices are discussed.  相似文献   

2.
Magnetic susceptibility (χ) and 51V NMR have been measured in (V1−xTix)2O3 near the phase boundary of the metal–insulator transition. It is established that the transition from antiferromagnetic insulating (AFI) to antiferromagnetic metallic phases near xc≈0.05 is not quantum critical, but is discontinuous with a jump of the transition temperature. In the AFI phase at 4.2 K, we observed the satellite in the zero-field 51V NMR spectrum around 181 MHz in addition to the ‘host’ resonance around 203 MHz. The satellite is also observable in the paramagnetic metallic phase of the x=0.055 sample. We associated the satellite with the V sites near Ti, which are in the V3+-like oxidation state, but has different temperature dependence of the NMR shift from that of the host V site. The host d-spin susceptibility for x=0.055 decreases below ∼60 K, but remains finite in the low-temperature limit.  相似文献   

3.
57Fe nuclear magnetic resonance (NMR) spectra of hexaferrite BaFe12O19 powder samples prepared by glass crystallization method were measured at 4.2 K and analyzed in comparison to spectra of single crystals. Samples with various mean particle dimensions were tested. NMR spectral lines corresponding to individual iron sublattices showed pronounced frequency shifts of their positions and a significant line broadening compared to single crystals. The significant contribution to the line shifts and line shape had a uniform macroscopic origin giving identical absolute value of shifts and the same line shapes for all measured lines of a particular sample. Estimations of demagnetization fields based on mean particle dimensions reasonably corresponded to the observed frequency shifts for particle mean diameter 67 nm, or had a higher value for a sample with mean diameter of 340 nm, for which a presence of domain walls was detected by NMR. In the spectrum of a sample with the smallest particles (~16 nm), an additional contribution having broader lines and faster spin-spin relaxations was found. It could be assigned to weaker exchange interactions or deviations of magnetic moment directions from the hexagonal axis in a surface layer.  相似文献   

4.
In this study, a powder mixture of Zn, Fe2O3 and NiO was used to produce different compositions of Ni1−xZnxFe2O4 (x=0.36, 0.5 and 0.64) nanopowders. High-energy ball milling with a subsequent heat treatment method was carried out. The XRD results indicated that for the content of Zn, x=0.64 a single phase of Ni–Zn ferrite was produced after 30 h milling while for the contents of Zn, x=0.36 and 0.5, the desired ferrite was formed after sintering the 30 h-milled powders at 500 °C. The average crystallite size decreased with increase in the Zn content. A DC electrical resistivity of the Ni–Zn ferrite, however, decreased with increase in the Zn content, its value was much higher than those samples prepared by the conventional ceramic route by using ZnO instead of Zn. This is attributed to smaller grains size which were obtained by using Zn. The FT-IR results suggested two absorption bands for octahedral and tetrahedral sites in the range of 350–700 cm−1. The VSM results revealed that by increasing the Zn content from 0.36 to 0.5, a saturation magnetization reached its maximum value; afterwards, a decrease was observed for Zn with x=0.64. Finally, magnetic permeability and dielectric permittivity were studied by using vector network analyzer to explore microwave-absorbing properties in X-band frequency. The minimum reflection loss value obtained for Ni0.5Zn0.5Fe2O4 samples, about −34 dB at 9.7 GHz, making them the best candidates for high frequency applications.  相似文献   

5.
The chemical pressure control in (Sr2−xCax)FeMoO6 (0  x  2.0) with double perovskite structure has been investigated systematically. We have performed first-principles total energy and electronic structure calculations for x = 0 and x = 2.0. The increasing Ca content in (Sr2−xCax)FeMoO6 samples increases the magnetic moment close to the theoretical value due to reduction of Fe/Mo anti-site disorder. An increasing Ca content results in increasing (Fe2+ + Mo6+)/(Fe3+ + Mo5+) band overlap rather than bandwidth changes. This is explained from simple ionic size arguments and is supported by X-ray absorption near edge structure (XANES) spectra and band structure calculations.  相似文献   

6.
BaFe2As2 is the parent compound of the ‘122’ iron arsenide superconductors and crystallizes with the tetragonal ThCr2Si2-type structure, space group I4/mmm. A spin-density-wave transition at 140 K is accompanied by a symmetry reduction to space group Fmmm and simultaneously by antiferromagnetic ordering. Hole-doping induces superconductivity in Ba1?xKxFe2As2 with a maximum Tc of 38 K at x  0.4. The upper critical fields approach 75 T with rather small anisotropy of Hc2. At low potassium concentrations (x ? 0.2), superconductivity apparently co-exists with the orthorhombically distorted and magnetically ordered phase. At doping levels x ? 0.3, the structural distortion and antiferromagnetic ordering is completely suppressed and the Tc is maximized. No magnetically ordered domains could be detected in optimally doped Ba1?xKxFe2As2 (x ? 0.3) by 57Fe Mössbauer spectroscopy in contrast μSR results obtained with single crystals. The magnetic hyperfine interactions investigated by 57Fe Mössbauer spectroscopy are discussed and compared to the ZrCuSiAs-type materials.  相似文献   

7.
The feasibility of obtaining 75As and 121/123Sb NMR spectra for solids at high and moderate magnetic field strengths is explored. Arsenic-75 nuclear quadrupolar coupling constants and chemical shifts have been measured for arsenobetaine bromide and tetraphenylarsonium bromide. Similarly, 121/123Sb NMR parameters have been measured for tetraphenylstibonium bromide and potassium hexahydroxoantimonate. The predicted pseudo-tetrahedral symmetry at arsenic and the known trigonal bipyramidal symmetry at antimony in their respective tetraphenyl-bromide “salts” are reflected in the measured 75As and 121Sb nuclear quadrupole coupling constants, CQ(75As)=7.8 MHz and CQ(121Sb)=159 MHz, respectively. Results of density functional theory quantum chemistry calculations for isolated molecules using ADF and first-principles calculations using CASTEP, a gauge-including projector augmented wave method to deal with the periodic nature of solids, are compared with experiment. Although the experiments can be time consuming, measurements of 75As and 121Sb NMR spectra (at 154 and 215 MHz, respectively, i.e., at B0=21.14 T) with linewidths in excess of 1 MHz are feasible using uniform broadband excitation shaped pulse techniques (e.g., WURST and WURST-QCPMG).  相似文献   

8.
Proton diffusion in [(NH4)1 ? xRbx]3H(SO4)2 (0 < x < 1) has been studied by means of 1H spin-lattice relaxation times, T1. The relaxation times were measured at 200.13 MHz in the range of 296–490 K and at 19.65 MHz in the range of 300–470 K. In the high-temperature phase (phase I), translational diffusion of the acidic protons relaxes both the acidic protons and the ammonium protons. Spin diffusion averages the relaxation rate of the two kinds of protons, whereas proton exchange between them are slow. The spin-lattice relaxation times in phase I were analyzed theoretically, and parameters of proton diffusion were obtained. The mean residence time of the acidic protons increases with increase in x for [(NH4)1 ? xRbx]3H(SO4)2 (0  x  0.54). Rb3H(SO4)2 does not obey this trend. The results of NMR well explain the macroscopic proton conductivity.  相似文献   

9.
The spinel ferrites of Ni0.2ZnxMg0.8−xFe2O4, 0⩽x⩾0.8, were studied at room temperature using X-ray diffraction and Mössbauer patterns. The analysis of the X-ray diffraction patterns proved that the samples have a single phase cubic spinel structure. The calculated values of the theoretical, true and average lattice constants, tetrahedral bond, tetrahedral edge and unshared octahedral edge were found to increase while the shared octahedral edge and octahedral bond decrease as the Zn2+ ion substitution increases. Mössbauer studies showed that the samples for x=0, 0.2 and 0.4 are magnetic and show rather broad lines, while for x=0.6 and 0.8 are paramagnetic. The hyperfine parameters of the tetrahedral and octahedral sites were determined as functions of composition x. The cation distributions were deduced and supported by X-ray studies. The B-site pattern was composite and has been fitted into multicomponents and the deduced hyperfine parameters have been discussed as a function of x.  相似文献   

10.
《Current Applied Physics》2010,10(1):333-336
Observation of room temperature ferromagnetism in Fe doped In2O3 samples (In1−xFex)2O3 (0  x  0.07) prepared by co-precipitation technique is reported. Lattice parameter obtained from powder X software shows distinct shrinkage of the lattice constant indicating an actual incorporation of Fe ions into the In2O3 lattice. X-ray diffraction data measurements show that the entire sample exhibits single phase polycrystalline behavior. SEM micrographs showed the prepared powder was in the range 25–36 nm. SEM EDS mapping showed the presence of Fe and In ions in the Fe doped In2O3 sample. The highest remanence magnetization moment (6.624 × 10−4 emu/g) is reached in the sample with x = 0.03.  相似文献   

11.
Hyperpolarized nuclear spins are observed in optically pumped iron-doped InP from 70 K to 140 K. 31P NMR was carried out at 9.28 T (159.8 MHz) during optical excitation with circularly polarized light, using a laser diode (λ∼830 nm) as a source. The enhancement of the nuclear spin polarization by optical pumping at 70 K is estimated to be about 34 for those nuclei in the region of the sample absorbing light. This enhancement decreases with increasing temperature. As the direction of the enhanced nuclear spin polarization is found parallel or antiparallel to the travelling direction of the σ+ or σ, the contact hyperfine interaction is dominant compared to the dipolar hyperfine interaction.  相似文献   

12.
《Solid State Ionics》2006,177(1-2):129-135
LixV2O5 (0.4 < x < 1.4) prepared by solid-state reaction were studied by 7Li and 51V NMR spectroscopy. 7Li NMR spectra showed a narrowing of the line width in relation to Li+ionic diffusion. Analysis of LixV2O5 using a Debye-type relaxation model showed a low activation energy ∼0.07 eV in the sample of x = 0.4 below room temperature, and revealed a Li+ionic diffusion with larger activation energy ∼0.5 eV above 450 K in lithium-rich samples. The latter is ascribed to the existence of a multi-phase system comprising stable ɛ- and γ-phases, resulting from complicated phase transitions at high temperature. These shapes and shifts enable the classification of the β-, ɛ-, δ-, and γ-phases. The ionic diffusion of Li+ ions is discussed in relation to the complicated phase transitions.  相似文献   

13.
《Solid State Ionics》2006,177(15-16):1317-1322
We have synthesized the perovskite oxides of the (Ba0.3Sr0.2La0.5)(In1−xFex)O3−δ system and measured the total electrical conductivity as a function of temperature and oxygen partial pressure. It was found that the single-phase composition region extended from x = 0.0 to x = 1.0, and that the Fe valence increased from 3.06 to 3.50 in that region. The electrical conductivity was semiconducting from x = 0.0 to x = 0.40 and metallic from x = 0.50 to x = 1.0. The total electrical conductivity at 800 °C also increased with the Fe content and achieved a maximum value of 140 (S/cm) at x = 1.0. From the dependence of the electrical conductivity on the oxygen partial pressure, we conclude that above x = 0.50, the majority carriers are holes. The estimated hole conductivity increased exponentially with the amount of Fe4+ cation present. The oxide ion conductivity was dependent on the oxygen vacancy content.  相似文献   

14.
《Solid State Ionics》2006,177(37-38):3223-3231
Proton dynamics in (NH4)3H(SO4)2 has been studied by means of 1H solid-state NMR. The 1H magic-angle-spinning (MAS) NMR spectra were traced at room temperature (RT) and at Larmor frequency of 400.13 MHz. 1H static NMR spectra were measured at 200.13 MHz in the range of 135–490 K. 1H spin-lattice relaxation times, T1, were measured at 200.13 and 19.65 MHz in the ranges of 135–490 and 153–456 K, respectively. The 1H chemical shift for the acidic proton (14.7 ppm) indicates strong hydrogen bonds. In phase III, NH4+ reorientation takes place; one type of NH4+ ions reorients with an activation energy (Ea) of 14 kJ mol 1 and the inverse of a frequency factor (τ0) of 0.85 × 10 14 s. In phase II, a very fast local and anisotropic motion of the acidic protons takes place. NH4+ ions start to diffuse translationally, and no proton exchange is observed between NH4+ ions and the acidic protons. In phase I, both NH4+ ions and the acidic protons diffuse translationally. The acidic protons diffuse with parameters of Ea = 27 kJ mol 1 and τ0 = 4.2 × 10 13 s. The translational diffusion of the acidic protons is responsible for the macroscopic proton conductivity, as the NH4+ translational diffusion is slow and proton exchange between NH4+ ions and the acidic protons is negligible.  相似文献   

15.
The ESR spectra of the ferrite system Co0.6Zn0.4MnxFe2−xO4 (x=0, 0.1, 0.2, 0.3, 0.4 and 0.5) were obtained at room temperature. The experimental values of the magnetic moment (μexp) were estimated from the ESR spectra and the cation distribution was consequently established from the values of μexp. The systematic decrease in ESR line width observed in our present study was attributed to the decrease of Fe2+ concentration with increasing Mn content. The resonance field decreases and reaches a minimum at high values of Mn content whereas the magnetic moment reaches a maximum at these values. The IR spectra were recorded in the range 200–1200 cm−1. The bands at 569 (ν1) and 389 cm−1 were assigned to the tetrahedral and octahedral complexes, respectively. The band at 441 cm−1 is due to the Mn–O bond vibration. The theoretical lattice parameter was calculated and was found to be larger than the experimental one aexp due to the presence of Mn4+ ions.  相似文献   

16.
The full frequency dependence of the optical delay in the Cs D1 (6 2S1/2 ? 6 2P1/2) line has been observed, including all four hyperfine split components. Pulse delays of 1.6 ns to 24.1 ns are obtained by scanning across the hyperfine splitting associated with the lower 2S1/2 state. Optical control of pulse delays in cesium vapor was demonstrated by pumping the D2 (6 2S1/2 ? 6 2P3/2) transition and observing resulting holes in the D1 delay spectrum. For a pump at four times the saturation intensity, the pulse delays are reduced by a maximum of 78% in a narrow region of 110 MHz. The frequency dependence of the delays of the probe laser in the vicinity of the spectral holes agrees with a Kramers–Kronig model prediction.  相似文献   

17.
The spin echo NMR spectra of57Fe have been taken at 77 K to describe the local magnetic properties of beryllum substituted copper ferrite Cu1−xBexFe2O4 for 0≤x≤0.2. From the spectra the concentration dependence of hyperfine magnetic fields for tetrahedral and octahedral sites have been derived. The results show that statistical distribution of beryllium atoms over magnetic sublattices takes place and suggest that only below x=0.2 solid solutions of beryllium copper ferrites can exist.  相似文献   

18.
《Solid State Ionics》2006,177(26-32):2269-2273
Iron-doped Pr2Ni0.8Cu0.2O4 was studied as a new mixed electronic and oxide-ionic conductor for use as an oxygen-permeating membrane. An X-ray diffraction analysis suggested that a single phase K2NiF4-type structure was obtained in the composition range from x = 0 to 0.05 in Pr2Ni0.8  xCu0.2FexO4. It is considered that the doped Fe is partially substituted at the Ni position in Pr2NiO4. The prepared Pr2NiO4-based oxide exhibited a dominant hole conduction in the PO2 range from 1 to 10 21 atm. The electrical conductivity of Pr2Ni0.8−xCu0.2FexO4 is as high as 102 S cm 1 in the temperature range of 873–1223 K and it gradually decreased with the increasing amount of Fe substituted for Ni. The oxygen permeation rate was significantly enhanced by the Fe doping and it was found that the highest oxygen permeation rate (60 μmol min 1 cm 2) from air to He was achieved for x = 0.05 in Pr2Ni0.8  xCu0.2FexO4. Since the chemical stability of the Pr2NiO4-based oxide is high, Pr2Ni0.75Cu0.2Fe0.05O4 can be used as the oxygen-separating membrane for the partial oxidation of CH4. It was observed that the oxygen permeation rate was significantly improved by changing from He to CH4 and the observed permeation rate reached a value of 225 μmol min 1 cm 2 at 1273 K for the CH4 partial oxidation.  相似文献   

19.
Local coordination structure around Yttrium ions in CeO2–Y2O3 binary and [(CeO2)x(ZrO2)1?x]0.8(YO1.5)0.2 (x = 0.0 ~ 1.0) ternary system has been investigated by 89Y MAS-NMR. NMR spectra are found to be consisted of multiple peaks that can be assigned to 6-, 7- and 8-oxygen coordinated Yttrium ions. Compositional dependence of the spectrum was observed and compared with the previous results for ZrO2–Y2O3 binary system. The present investigation suggested the degree of localization of the oxygen vacancy around the cation is in the order of Zr4+ > Y3+ > Ce4+. The degree of the oxygen vacancy preference for each cation was quantitatively determined for CeO2–ZrO2–Y2O3 ternary system the first time.  相似文献   

20.
A series of SmFe1?xZnxAsO0.8F0.2 samples with x = 0, 0.05, 0.1, 0.2 and 0.4 have been successfully synthesized using a solid state method. The lattice parameters are found to increase with increasing Zn doping content. The superconductivity has been definitely suppressed by Zn doping at Fe site with the transition temperature Tc being reduced from 52.5 K to 23.3 K for the sample of x = 0.05, and to 18.2 K for the sample of x = 0.1. For the samples with x > 0.1, the superconducting transition vanishes, and, at the meantime, the spin-density-wave anomaly recovers at 140 K. The metal to semiconductor transition is also observed in the SmFe1?xZnxAsO0.8F0.2 system. The behavior of SmFe1?xZnxAsO0.8F0.2 is very different from that of REFeAsO (RE = rare earth metal), which reveals a very strong electron correlation in SmFe1?xZnxAsO0.8F0.2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号