首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The crystal structure determination of the molecular proton‐transfer adduct of Kemp's triacid (ciscis‐1,3,5‐tri­methyl­cyclo­hexane‐1,3,5‐tri­carboxylic acid, KTA) with 2‐amino­pyridine (2‐APY), namely 2‐amino­pyridinium 3,5‐di­carboxy‐1,3,5‐tri­methyl­cyclo­hexane­carboxyl­ate, 2‐APY+·KTA? or C5H7N2+·C12H17O6?, has revealed a centrosymmetric hydrogen‐bonded cyclic KTA homodimer repeating unit [O?O 2.524 (4) Å] linked into a polymer structure through the pyridinium and amino groups of the 2‐APY mol­ecule [O?N 2.736 (4), 2.989 (4) and 2.999 (4) Å].  相似文献   

2.
Of the numerous ways in which two adenine and two guanines (N9 positions blocked in each) can be cross‐linked by three linear metal moieties such as trans‐a2PtII (with a=NH3 or MeNH2) to produce open metalated purine quartets with exclusive metal coordination through N1 and N7 sites, one linkage isomer was studied in detail. The isomer trans,trans,trans‐[{Pt(NH3)2(N7‐9‐EtA‐N1)2}{Pt(MeNH2)2(N7‐9‐MeGH)}2][(ClO4)6] ? 3H2O ( 1 ) (with 9‐EtA=9‐ethyladenine and 9‐MeGH=9‐methylguanine) was crystallized from water and found to adopt a flat Z‐shape in the solid state as far as the trinuclear cation is concerned. In the presence of excess 9‐MeGH, a meander‐like construct, trans,trans,trans‐[{Pt(NH3)2(N7‐9‐EtA‐N1)2}{Pt(MeNH2)2(N79‐MeGH)2}][(ClO4)6] ? [(9‐MeGH)2] ? 7 H2O ( 2 ) is formed, in which the two extra 9‐MeGH nucleobases are hydrogen bonded to the two terminal platinated guanine ligands of 1 . Compound 1 , and likewise the analogous complex 1 a (with NH3 ligands only), undergo loss of an ammonia ligand and formation of NH4+ when dissolved in [D6]DMSO. From the analogy between the behavior of 1 and 1 a it is concluded that a NH3 ligand from the central Pt atom is lost. Addition of 1‐methylcytosine (1‐MeC) to such a DMSO solution reveals coordination of 1‐MeC to the central Pt. In an analogous manner, 9‐MeGH can coordinate to the central Pt in [D6]DMSO. It is proposed that the proton responsible for formation of NH4+ is from one of the exocyclic amino groups of the two adenine bases, and furthermore, that this process is accompanied by a conformational change of the cation from Z‐form to U‐form. DFT calculations confirm the proposed mechanism and shed light on possible pathways of this process. Calculations show that rotational isomerism is not kinetically hindered and that it would preferably occur previous to the displacement of NH3 by DMSO. This displacement is the most energetically costly step, but it is compensated by the proton transfer to NH3 and formation of U(?H+) species, which exhibits an intramolecular hydrogen bond between the deprotonated N6H? of one adenine and the N6H2 group of the other adenine. Finally the question is examined, how metal cross‐linking patterns in closed metallacyclic quartets containing two adenine and two guanine nucleobases influence the overall shape (square, rectangle, trapezoid) and the planarity of a metalated purine quartet.  相似文献   

3.
Heteronuclear Coordination Compounds with Metal—Metal Bonds. IX. Amine Copper(I) Carbonyl Metalates with Cobalt, Iron, or Manganese Colourless crystals of the carbonyl copper complex [(NH3)3(CO)Cu][Co(CO)4] ( 1 a ) are formed in the reaction of [Cu(NH3)4]Cl and Na[Co(CO)4] (T < ? 8°C, pCO = 1 bar); above ?5°C and under N2-atmosphere 1 a converts to [(NH3)2CuCo(CO)4] ( C ), which serves as a starting material for the synthesis of new copper cobaltates: the amines N-amino piperidine, N,N-dimethyl ethylenediamine (dmed) and N-benzyl N,N′-dimethyl ethylenediamine (bn-dmed) replace NH3 to form [(C5H10N? NH2)3CuCo(CO)4] ( 1 b ), [(dmed)CuCo(CO)4] ( 1 c ), [(bn-dmed)CuCo(CO)4] ( 1 d ) the Cu? Co-bond remaining intact. [(NH3)2CuFe(CO)3NO] ( 2 a ) is isosteric with C ; it is synthesized from [Cu(NH3)4]Cl and Na[Fe(CO)3NO] in aqueous solution; 2 a reacts with N,N,N′,N′-tetramethyl ethylenediamine (tmed) to form [(tmed)(NH3)CuFe(CO)3NO] ( 2b ). The [Mn(CO)5]? ion reacts with ammine copper ions to form the tetranuclear cluster [{(NH3)CuMn(CO)5}2] ( 3 ). All new compounds have been investigated by X-ray structure analysis.  相似文献   

4.
The influence of the potentially chelating imino group of imine‐functionalized Ir and Rh imidazole complexes on the formation of functionalized protic N‐heterocyclic carbene (pNHC) complexes by tautomerization/metallotropism sequences was investigated. Chloride abstraction in [Ir(cod)Cl{C3H3N2(DippN=CMe)‐κN3}] ( 1 a ) (cod=1,5‐cyclooctadiene, Dipp=2,6‐diisopropylphenyl) with TlPF6 gave [Ir(cod){C3H3N2(DippN=CMe)‐κ2(C2,Nimine)}]+[PF6]? ( 3 a +[PF6]?). Plausible mechanisms for the tautomerization of complex 1 a to 3 a +[PF6]? involving C2?H bond activation either in 1 a or in [Ir(cod){C3H3N2(DippN=CMe)‐κN3}2]+[PF6]? ( 6 a +[PF6]?) were postulated. Addition of PR3 to complex 3 a +[PF6]? afforded the eighteen‐valence‐electron complexes [Ir(cod)(PR3){C3H3N2(DippN=CMe)‐κ2(C2,Nimine)}]+[PF6]? ( 7 a +[PF6]? (R=Ph) and 7 b +[PF6]? (R=Me)). In contrast to Ir, chloride abstraction from [Rh(cod)Cl{C3H3N2(DippN=CMe)‐κN3}] ( 1 b ) at room temperature afforded [Rh(cod){C3H3N2(DippN=CMe)‐κN3}2]+[PF6]? ( 6 b +[PF6]?) and [Rh(cod){C3H3N2(DippN=CMe)‐κ2(C2,Nimine)}]+[PF6]? ( 3 b +[PF6]?) (minor); the reaction yielded exclusively the latter product in toluene at 110 °C. Double metallation of the azole ring (at both the C2 and the N3 atom) was also achieved: [Ir2(cod)2Cl{μ‐C3H2N2(DippN=CMe)‐κ2(C2,Nimine),κN3}] ( 10 ) and the heterodinuclear complex [IrRh(cod)2Cl{μ‐C3H2N2(DippN=CMe)‐κ2(C2,Nimine),κN3}] ( 12 ) were fully characterized. The structures of complexes 1 b , 3 b +[PF6]?, 6 a +[PF6]?, 7 a +[PF6]?, [Ir(cod){C3HN2(DippN=CMe)(DippN=CH)(Me)‐κ2(N3,Nimine)}]+[PF6]? ( 9 +[PF6]?), 10? Et2O ? toluene, [Ir2(CO)4Cl{μ‐C3H2N2(DippN=CMe)‐κ2(C2,Nimine),κN3}] ( 11 ), and 12? 2 THF were determined by X‐ray diffraction.  相似文献   

5.
The preparation and X‐ray crystal structure analysis of {trans‐[Pt(MeNH2)2(9‐MeG‐N1)2]} ? {3 K2[Pt(CN)4]} ? 6 H2O ( 3 a ) (with 9‐MeG being the anion of 9‐methylguanine, 9‐MeGH) are reported. The title compound was obtained by treating [Pt(dien)(9‐MeGH‐N7)]2+ ( 1 ; dien=diethylenetriamine) with trans‐[Pt(MeNH2)2(H2O)2]2+ at pH 9.6, 60 °C, and subsequent removal of the [(dien)PtII] entities by treatment with an excess amount of KCN, which converts the latter to [Pt(CN)4]2?. Cocrystallization of K2[Pt(CN)4] with trans‐[Pt(MeNH2)2(9‐MeG‐N1)2] is a consequence of the increase in basicity of the guanine ligand following its deprotonation and Pt coordination at N1. This increase in basicity is reflected in the pKa values of trans‐[Pt(MeNH2)2(9‐MeGH‐N1)2]2+ (4.4±0.1 and 3.3±0.4). The crystal structure of 3 a reveals rare (N7,O6 chelate) and unconventional (N2,C2,N3) binding patterns of K+ to the guaninato ligands. DFT calculations confirm that K+ binding to the sugar edge of guanine for a N1‐platinated guanine anion is a realistic option, thus ruling against a simple packing effect in the solid‐state structure of 3 a . The linkage isomer of 3 a , trans‐[Pt(MeNH2)2(9‐MeG‐N7)2] ( 6 a ) has likewise been isolated, and its acid–base properties determined. Compound 6 a is more basic than 3 a by more than 4 log units. Binding of metal entities to the N7 positions of 9‐MeG in 3 a has been studied in detail for [(NH3)3PtII], trans‐[(NH3)2PtII], and [(en)PdII] (en=ethylenediamine) by using 1H NMR spectroscopy. Without exception, binding of the second metal takes place at N7, but formation of a molecular guanine square with trans‐[(Me2NH2)PtII] cross‐linking N1 positions and trans‐[(NH3)2PtII] cross‐linking N7 positions could not be confirmed unambiguously, despite the fact that calculations are fully consistent with its existence.  相似文献   

6.
By using the node‐and‐spacer approach in suitable solvents, four new heterotrimetallic 1D chain‐like compounds (that is, containing 3d–3d′–4f metal ions), {[Ni(L)Ln(NO3)2(H2O)Fe(Tp*)(CN)3] ? 2 CH3CN ? CH3OH}n (H2L=N,N′‐bis(3‐methoxysalicylidene)‐1,3‐diaminopropane, Tp*=hydridotris(3,5‐dimethylpyrazol‐1‐yl)borate; Ln=Gd ( 1 ), Dy ( 2 ), Tb ( 3 ), Nd ( 4 )), have been synthesized and structurally characterized. All of these compounds are made up of a neutral cyanide‐ and phenolate‐bridged heterotrimetallic chain, with a {? Fe? C?N? Ni(? O? Ln)? N?C? }n repeat unit. Within these chains, each [(Tp*)Fe(CN)3]? entity binds to the NiII ion of the [Ni(L)Ln(NO3)2(H2O)]+ motif through two of its three cyanide groups in a cis mode, whereas each [Ni(L)Ln(NO3)2(H2O)]+ unit is linked to two [(Tp*)Fe(CN)3]? ions through the NiII ion in a trans mode. In the [Ni(L)Ln(NO3)2(H2O)]+ unit, the NiII and LnIII ions are bridged to one other through two phenolic oxygen atoms of the ligand (L). Compounds 1 – 4 are rare examples of 1D cyanide‐ and phenolate‐bridged 3d–3d′–4f helical chain compounds. As expected, strong ferromagnetic interactions are observed between neighboring FeIII and NiII ions through a cyanide bridge and between neighboring NiII and LnIII (except for NdIII) ions through two phenolate bridges. Further magnetic studies show that all of these compounds exhibit single‐chain magnetic behavior. Compound 2 exhibits the highest effective energy barrier (58.2 K) for the reversal of magnetization in 3d/4d/5d–4f heterotrimetallic single‐chain magnets.  相似文献   

7.
The crystal structure of the title complex, [Cu(C7H8N4)2(H2O)2](ClO4)2, consists of a discrete centrosymmetric [Cu(C7H8N4)2(H2O)2]2+ cation and two perchlorate anions. The CuII centre is six‐coordinated by four N donors from the two pyrazole rings [Cu—N 1.998 (2) and 2.032 (3) Å] and two O atoms from the water mol­ecules occupying the apical sites [Cu—O 2.459 (3) Å]. The coordination geometry of the complex can be described as octahedral. There is a unique three‐dimensional network in which the perchlorate units are linked by a combination of strong O—H?O and weak C—H?O hydrogen bonds.  相似文献   

8.
1,1,1‐Trimethylhydrazinium iodide ([(CH3)3N? NH2]I, 1 ) was reacted with a silver salt to form the corresponding nitrate ([(CH3)3N? NH2][NO3], 2 ), perchlorate ([(CH3)3N? NH2][ClO4], 3 ), azide ([(CH3)3N? NH2][N3], 4 ), 5‐amino‐1H‐tetrazolate ([(CH3)3N? NH2][H2N? CN4], 5 ), and sulfate ([(CH3)3N? NH2]2[SO4]?2H2O, 6 ?2H2O) salts. The metathesis reaction of compound 6 ?2H2O with barium salts led to the formation of the corresponding picrate ([(CH3)3N? NH2][(NO2)3Ph ‐ O], 7 ), dinitramide ([(CH3)3N? NH2][N(NO2)2], 8 ), 5‐nitrotetrazolate ([(CH3)3N? NH2][O2N? CN4], 9 ), and nitroformiate ([(CH3)3N? NH2][C(NO2)3], 10 ) salts. Compounds 1 – 10 were characterized by elemental analysis, mass spectrometry, infrared/Raman spectroscopy, and multinuclear NMR spectroscopy (1H, 13C, and 15N). Additionally, compounds 1 , 6 , and 7 were also characterized by low‐temperature X‐ray diffraction techniques (XRD). Ba(NH4)(NT)3 (NT=5‐nitrotetrazole anion) was accidentally obtained during the synthesis of the 5‐nitrotetrazole salt 9 and was also characterized by low‐temperature XRD. Furthermore, the structure of the [(CH3)3N? NH2]+ cation was optimized using the B3LYP method and used to calculate its vibrational frequencies, NBO charges, and electronic energy. Differential scanning calorimetry (DSC) was used to assess the thermal stabilities of salts 2 – 5 and 7 – 10 , and the sensitivities of the materials towards classical stimuli were estimated by submitting the compounds to standard (BAM) tests. Lastly, we computed the performance parameters (detonation pressures/velocities and specific impulses) and the decomposition gases of compounds 2 – 5 and 7 – 10 and those of their oxygen‐balanced mixtures with an oxidizer.  相似文献   

9.
[MNCl2(PPh3)2] complexes (M = Re, Tc) react with N‐[(dialkylamino)(thiocarbonyl)]‐N′‐(2‐hydroxyphenyl)benzamidines (H2L1) with formation of neutral, five‐coordinate nitrido complexes of the composition [MN(L1)(PPh3)]. The products have distorted square‐pyramidal coordination spheres with each a tridentate, double‐deprotonated benzamidine and a PPh3 ligand in their basal planes.  相似文献   

10.
Metal Complexes of Biologically Important Ligands. CXVII [1] Addition of the O'Donnell Reagent [Ph2C=NCHCO2Me] to Coordinated, Unsaturated Hydrocarbons of [(C6H7)Fe(CO)3]+, [C7H9Fe(CO)3]+, [(C7H7)M(CO)3]+ (M = Cr, Mo), and [(C2H4)Re(CO)5]+. α-Amino Acids with Organometallic Side Chains The addition of [Ph2C=NCHCO2Me] to [(C6H7)Fe(CO)3]+, [(C7H9)Fe(CO)3]+, [(C7H7)M(CO)3]+ (M = Cr, Mo) and [(C2H4)Re(CO)5]+ gives derivatives of α-amino acids with organometallic side chains. The structure of [(η4-C6H7)CH(N=CPh2)CO2Me]Fe(CO)3 was determined by X-ray diffraction. From the adduct of [Ph2C=NCHCO2Me] and [(C7H7)Mo(CO)3]+ the Schiff base of a new unnatural α-amino acid, Ph2C=NCH(C7H7)CO2Me, was obtained.  相似文献   

11.
[Ag(NH3)2]+ ions are chosen as an initial reaction precursor because of its simple displacement reaction and intrinsic arrangement as well as specific coordination directionality. Two new silver(I) ammine complexes, Ag2(NH3)HL2 ( 2 ) and Ag2(NH3)2HL3 ( 3 ), were obtained by a simple substitution reaction between [Ag(NH3)2]+ ions and pyridine‐4,5‐imidazoledicarboxylic acid [H3L2 = 2‐(3′‐pyridyl) 4,5‐imidazoledicarboxylic acid and H3L3 = 2‐(4′‐pyridyl) 4,5‐imidazoledicarboxylic acid]. Silver dimers are connected into a 2D layer and 1D chain in complexes 2 and 3 , respectively. In complex 2 two kinds of displacement reactions (mono‐substituting and bis‐substituting) occurred between the ammine molecules in [Ag(NH3)2]+ ions and H3L2, however, only the mono‐substituting reaction occurs in complex 3 .  相似文献   

12.
The structures of dichloro{2‐[(5‐methyl‐1H‐pyrazol‐3‐yl‐κN2)methyl]‐1H‐1,3‐benzimidazole‐κN3}copper(II), [CuCl2(C12H12N4)], and di‐μ‐chloro‐bis(chloro{2‐[(5‐methyl‐1H‐pyrazol‐3‐yl‐κN2)methyl]‐1H‐1,3‐benzimidazole‐κN3}­cadmium(II)), [Cd2Cl4(C12H12N4)2], show that these compounds have the structural formula [ML(Cl)2]n, where L is 2‐[(5‐methylpyra­zolyl)methyl]benzimidazole. When M is copper, the complex is a monomer (n = 1), with a tetrahedral coordination for the Cu atom. When M is cadmium (n = 2), the complex lies about an inversion centre giving rise to a centrosymmetric dimer in which the Cd atoms are bridged by two chloride ions and are pentacoordinated.  相似文献   

13.
Copper(II) complexes of the ligands N2-[(R)-2-hydroxypropyl]- and N2-[(S)-2-hydroxypropyl]-(S)-phenylalaninamide performed chiral separation of N-dansyl-protected and unmodified amino acids in HPLC (reversed phase). With the aim of investigating which species are potentially involved in the discrimination mechanism, the two ligands were synthesized and their complexation equilibria with Cu2+ studied by potentiometry and spectrophotometry in aqueous solution up to pH 11.7. The formation constants of the species observed, [CuL]2+, [CuL2]2+, [CuLH–1]+, [CuL2H–1]+, [CuL2H–2], and [CuL2H–3]?, were quite similar for both compounds and were compared to those of (S)-phenylalaninamide. Most probably, in [CuL2H–3]? the ligands behave as terdentate, with the deprotonated OH group occupying an apical position.  相似文献   

14.
Centrosymmetric dimers of ZnII with singly deprotonated 2‐[(2‐carbamoylhydrazin‐1‐ylidene)methyl]phenolate, [Zn2(C8H8N3O2)Cl2]·2CH3OH, form an infinite one‐dimensional hydrogen‐bonded chain which is further aggregated by non‐aromatic–aromatic π–π stacking and nonclassical N—H...Cl hydrogen bonding.  相似文献   

15.
The new compound C10H6P(S)[NSi(CH3)3]2P(S) ( 3 ) which contains a P2N2 heterocycle has been prepared in low yield by partial thermal decomposition of 1-{[N,N′-bis(trimethylsilyl)acetamidinium]sulfido}-3-(trimethylsilylamino)-1 H,3 H,1 λ5,3 λ5-naphtho[1,8 a,8-cd][1,2,6]thiadiphosphinine-1,3-dithione [CH3C{NHSi(CH3)3}2]+[C10H6P(S)(NHSiMe3)SP(S)2] ( 2 ). Reaction of 2 with potassium hydroxide in acetonitrile gives the completely desilylated product [CH3C(NH2)2]+[C10H6P(S)(NH2)SP(S)2] ( 4 ). The structures of the new compounds 3 and 4 were elucidated by FTIR and NMR spectroscopy methods and by X-ray structure analyses.  相似文献   

16.
Reaction of PPh3 and [(p‐ClC6H4)N2][BF4] affords [(p‐ClC6H4)N(PPh3)N(PPh3)][BF4] 1 , while reaction with (Ph2PCH2)2 gave [(p‐ClC6H4)(NPh2PCH2)2)][BF4] 2 . These species confirm the Lewis acidity of [(p‐ClC6H4)N2(PR3)][BF4] cations at N. In contrast, use of bulky phosphines afford the species [ArN2(PR3)][BF4] (R=tBu 3 , Mes 4 ). Compound 3 undergoes one electron reduction to give the stable radical [(p‐ClC6H4)N2(PtBu3)]. 5 . Combination of 3 and PtBu3 acts as an FLP to effect (SPh)2 cleavage, generating [PhSPtBu3]+ and the radical [ArN2(PR3)].. Collectively, these data affirm the ability of the cations [ArN2(PR3)]+ to behave as one or two electron acceptors.  相似文献   

17.
The crystal structures of 2‐hydroxy‐5‐[(E)‐(4‐nitrophenyl)diazenyl]benzoic acid, C13H9N3O5, (I), ammonium 2‐hydroxy‐5‐[(E)‐phenyldiazenyl]benzoate, NH4+·C13H9N2O3, (II), and sodium 2‐hydroxy‐5‐[(E)‐(4‐nitrophenyl)diazenyl]benzoate trihydrate, Na+·C13H8N3O5·3H2O, (III), have been determined using single‐crystal X‐ray diffraction. In (I) and (III), the phenyldiazenyl and carboxylic acid/carboxylate groups are in an anti orientation with respect to each other, which is in accord with the results of density functional theory (DFT) calculations, whereas in (II), the anion adopts a syn conformation. In (I), molecules form slanted stacks along the [100] direction. In (II), anions form bilayers parallel to (010), the inner part of the bilayers being formed by the benzene rings, with the –OH and –COO substituents on the bilayer surface. The NH4+ cations in (II) are located between the bilayers and are engaged in numerous N—H...O hydrogen bonds. In (III), anions form layers parallel to (001). Both Na+ cations have a distorted octahedral environment, with four octahedra edge‐shared by bridging water O atoms, forming [Na4(H2O)12]4+ units.  相似文献   

18.
Cocrystallization of the inorganic [BeF4]2? unit with the organic moiety [NH3CH2CH(NH3)CH3]2+ results in the three‐dimensional network of the title compound, (C3H12N2)[BeF4] or C3H12N22+·BeF42?, created by hydrogen bonds between the protonated ammonium groups and the highly electronegative F atoms of the anion. The structure is described in terms of layers related to each other by crystallographic centres of symmetry.  相似文献   

19.
Formation and Behaviour of Chlorozinc Acids in Ethanolic Solution The reaction between ZnCl2 and HCl in ethanol leads to H2ZnCl4 only. The behaviour of H2ZnCl4 · 3 (C2H5)2O, (NH4)2[ZnCl4] and HCl in ethanolic solutions has been investigated by means of conductivity measurements at ?10 and ?20°C. The equivalent conductivities have been determined. The Stokes radii of [ZnCl4]2?, H+, and [(C2H5)2OH]+ are calculated.  相似文献   

20.
Two new NiII complexes involving the ancillary ligand bis[(pyridin‐2‐yl)methyl]amine (bpma) and two different carboxylate ligands, i.e. homophthalate [hph; systematic name: 2‐(2‐carboxylatophenyl)acetate] and benzene‐1,2,4,5‐tetracarboxylate (btc), namely catena‐poly[[aqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)]‐μ‐2‐(2‐carboxylatophenyl)aceteto‐κ2O:O′], [Ni(C9H6O4)(C12H13N3)(H2O)]n, and (μ‐benzene‐1,2,4,5‐tetracarboxylato‐κ4O1,O2:O4,O5)bis(aqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)) bis(triaqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)) benzene‐1,2,4,5‐tetracarboxylate hexahydrate, [Ni2(C10H2O8)(C12H13N3)2(H2O)2]·[Ni(C12H13N3)(H2O)3]2(C10H2O8)·6H2O, (II), are presented. Compound (I) is a one‐dimensional polymer with hph acting as a bridging ligand and with the chains linked by weak C—H...O interactions. The structure of compound (II) is much more complex, with two independent NiII centres having different environments, one of them as part of centrosymmetric [Ni(bpma)(H2O)]2(btc) dinuclear complexes and the other in mononuclear [Ni(bpma)(H2O)3]2+ cations which (in a 2:1 ratio) provide charge balance for btc4− anions. A profuse hydrogen‐bonding scheme, where both coordinated and crystal water molecules play a crucial role, provides the supramolecular linkage of the different groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号