首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Stereoselective total synthesis of Patulolide C has been accomplished from easily available and inexpensive (S)-chiral epoxide. The key steps involved in the concise synthesis of Patulolide C utilizes ring opening of chiral epoxide, cleavage of 1,2-diol, deprotection of benzyl ether of hydroxyl acid and Yamaguchi macrolactonisation dilution conditions as key steps. The advantage of this method include inexpensive starting material, mild reaction conditions and high purity of products.  相似文献   

2.
The synthesis of (L )‐lactide oligomers from dimer to 64mer via an exponential growth strategy is described. By careful selection of orthogonal protective groups, the synthesis were conducted using a t‐butyldimethylsilyl (TBDMS) ether as the protective group of the hydroxyl group and benzyl (Bn) ester as the protective group of the carboxylic acid group. The yields of both the deprotection steps and coupling reactions using 1,3‐dicyclohexylcarbodiimide or 1‐[3‐(dimethylamino)propyl]‐3‐ethylcarbodiimide hydrochloride were high (70–100%) and the absence of a requirement for conducting the majority of reactions under an inert atmosphere permitted a robust and efficient synthetic strategy to be developed. This allowed monodisperse dimer, tetramer, octamer, 16mer, 32mer, and 64mer materials to be prepared in gram quantities and fully characterized using mass spectrometry and size exclusion chromatography. Evaluation of the thermal and physical properties using thermogravimetric analysis, differential scanning calorimetry, and small angle X‐ray scattering demonstrated a close correlation between the molecular structure of the well‐defined Poly(lactide) oligomers and their physical properties. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5977–5990, 2008  相似文献   

3.
The synthesis and biological evaluation of the Forssman antigen pentasaccharide and derivatives thereof by using a one‐pot glycosylation and polymer‐assisted deprotection is described. The Forssman antigen pentasaccharide, composed of GalNAcα(1,3)GalNAcβ(1,3)Galα(1,4)Galβ(1,4)Glc, was recently identified as a ligand of the lectin SLL‐2 isolated from an octocoral Sinularia lochmodes. The chemo‐ and α‐selective glycosylation of a thiogalactoside with a hemiacetal donor by using a mixture of Tf2O, TTBP and Ph2SO, followed by activation of the remaining thioglycoside, provided the trisaccharide at the reducing end in a one‐pot procedure. The pentasaccharide was prepared by the α‐selective glycosylation of the N‐Troc‐protected (Troc=2,2,2‐trichloroethoxycarbonyl) thioglycoside with a 2‐azide‐1‐hydroxyl glycosyl donor, followed by glycosidation of the resulting disaccharide at the C3 hydroxyl group of the trisaccharide acceptor in a one‐pot process. We next applied the one‐pot glycosylation method to the synthesis of pentasaccharides in which the galactosamine units were partially and fully replaced by galactose units. Among the three possible pentasaccharides, Galα(1,3)GalNAc and Galα(1,3)Gal derivatives were successfully prepared by the established method. An assay of the binding of the synthetic oligosaccharides to a fluorescent‐labeled SLL‐2 revealed that the NHAc substituents and the length of the oligosaccharide chain were both important for the binding of the oligosaccharide to SLL‐2. The inhibition effect of the oligosaccharide relative to the morphological changes of Symbiodinium by SLL‐2, was comparable to their binding affinity to SLL‐2. In addition, we fortuitously found that the synthetic Forssman antigen pentasaccharide directly promotes a morphological change in Symbiodinium. These results strongly indicate that the Forssman antigen also functions as a chemical mediator of Symbiodinium.  相似文献   

4.
The glycosidation of a polymer‐supported glycosyl donor, N‐phenyltrifluoroacetimidate, with various glycosyl acceptors is reported. The application of the polymer‐supported N‐phenyltrifluoroacetimidate is demonstrated in the synthesis of vancomycin derivatives. 2‐O‐[2‐(azidomethyl)benzoyl]glycosyl imidate was attached to a polymer support at the 6‐position by a phenylsulfonate linked with a C13 alkyl spacer. Solid‐phase glycosidation with a vancomycin aglycon, selective deprotection of the 2‐(azidomethyl)benzoyl group, and glycosylation of the resulting 2‐hydroxy group with a vancosamine unit were performed. Nucleophilic cleavage from the polymer support with acetate, chloride, azido, and thioacetate ions provided vancomycin derivatives in pure form after simple purification. The semisynthesis of vancomycin was achieved by deprotection of the acetate derivative.  相似文献   

5.
Abstract

The benzyl group is often used in organic synthesis, especially in carbohydrate chemistry, as one of the most useful of the hydroxyl protecting groups. Benzyl ethers are stable to basic conditions and the benzyl group is removed easily by hydrogenolysis or under Birch reduction conditions. Alternatively, the benzyl ether group is oxidized to benzoyl ester and removed under basic conditions. A few oxidation methods have been reported using more than a stoichiometric amount of chromium reagents such as CrO3-H2SO4 (Jones reagent)1 or CrO3-AcOH2. Here we report a new and mild oxidation of benzyl ether to benzoyl ester with a catalytic amount of RuO4 derived from RuCl3 and NaIO4. This method has proved effective in removing benzyl ether groups chemoselectively in the presence of benzylidene acetal and benzyl glycosidic functions.  相似文献   

6.
The synthesis of molecularly defined epsilon-caprolactone oligomers and polymers up to the 64-mer, via an exponential growth strategy, is described. By careful selection of orthogonal protecting groups, t-butyldimethylsilyl (TBDMS) ether for the hydroxyl group and benzyl (Bn) ester for the carboxylic acid group, a highly efficient synthetic strategy was developed with yields for both deprotection steps being essentially quantitative and for the coupling reactions using 1,3-dicyclohexylcarbodiimide (DCC), yields of 80-95% were obtained even at high molecular weights. This allows monodisperse dimers, tetramers, octamers, 16-mers, 32-mers and 64-mers to be prepared in gram quantities and fully characterized using mass spectroscopy, size exclusion chromatography (SEC), and IR and NMR spectroscopy. Thermal and physical properties were measured using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), atomic force microscopy (AFM), and small-angle X-ray scattering (SAXS). These results conclusively show a distinct structure/property relationship with a close correlation between the number of repeat units and physical properties. In addition, a number of marked differences were observed on comparison with the parent poly(caprolactone) polymer.  相似文献   

7.
[structures: see text] The enantiospecific synthesis of 7-methoxy-D-tryptophan ethyl ester was completed by combination of the Larock heteroannulation process with a Sch?llkopf-based chiral auxiliary in good yield. This ester was then employed in the first regiospecific, stereospecific total synthesis of (+)-12-methoxy-N(a)-methylvellosimine, (+)-12-methoxyaffinisine, (-)-fuchsiaefoline, and 12-methoxy-N(b)-methylvoachalotine in excellent overall yield. The asymmetric Pictet-Spengler reaction and enolate-driven palladium-catalyzed cross-coupling processes served as key steps. The quaternary center at C16 of 12-methoxy-N(b)-methylvoachalotine was established via the Tollens reaction between (+)-12-methoxy-N(a)-methylvellosimine and formaldehyde to form diol 17. The two prochiral primary alcohols in diol 17 were differentiated by the oxidative cyclization(DDQ) of the hydroxyl group at the axial position of 17 with the benzylic postion at [C6] to form a cyclic ether [C6-O17]. After oxidative formation of the alpha-ester at C16, the ether bond was reductively cleaved with TFA/Et3SiH in high yield. The DDQ-mediated oxidative cyclization and TFA/Et3SiH reductive cleavage served as protection/deprotection steps in order to provide a versatile entry into the voachalotine alkaloids.  相似文献   

8.
Jan Pícha 《Tetrahedron》2009,65(31):6090-6103
In the present work, we describe in detail an efficient solution synthesis of norleucine-derived phosphonopeptides mimicking the peptide sequences Nle-Gly(Ala) and Nle-Gly(Ala)-Val. The most efficient strategy involved use of the benzyl group. The synthesis was achieved through BOP-catalysed coupling of the monobenzyl ester of the N-Cbz-protected phosphonate derivative of norleucine with the hydroxyl moieties of derivatised l-lactic or glycolic acid. Subsequently, complete deprotection of the products was achieved in good yields by one-step Pd-catalysed hydrogenolysis. We also prepared the Fmoc-Nle-Ψ[PO(OH)O]-CH2-COOH synthon and demonstrated that this precursor is a suitable building block for the solid-phase synthesis of cysteine-containing phosphonopeptides.  相似文献   

9.
The acetyl ester plays an important role for protection of the hydroxyl groups in carbohydrates synthesis.In the present study,we described an efficient deprotection of acetyl group of pentacyclic triterpenoid by using methanolic ammonia in THF solution.Good selectivity for cleaving gal-C2-OAc group of 3β-hydroxy-olean-12-en-28-oic acid 28-N-2,3,4,6-tetra-O-acetyl-β-D-galactopyranoside(3) was achieved in the presence of methanolic ammonia within 4 h at low temperature(-60℃) in a yield of 56%.The reaction disclosed here provides a new method for the synthesis of C2 selective modified carbohydrates,which is more useful than conventional synthesis procedure that usually requires many steps including temporary regioselective protection and deprotection.When the reaction temperature was increased from -60℃ to room temperature,the cleavage of the other three acetyl groups of galactose in an order of C4-OAc>C3-OAc>C6-OAc was observed.Based on this study,a plausible route for the deacetylation reaction has been proposed.  相似文献   

10.
In multi-step syntheses involving polyhydroxylated natural products such as carbohydrates that are variously derivatized at different positions, orthogonal removal of one or another type of protecting group is of vital importance. Discrimination of different classes of protecting groups, such as ethers, esters, etc., is often possible with a great degree of success, as for example, selective removal of an 0-acetyl by catalytic transesterification in the presence of an ether protecting group, or hydrogenolytic removal of a benzyl ether protection in the presence of ester groups such as acetates.3 Differentiation of different types of protecting groups within a given class of protecting groups has also been similarly achieved with great success, as for example, hydrogenolytic removal of a benzyl ether group in the presence of a methyl ether.3 However, the situation becomes more challenging when the same protecting group is used to mask more than one position in a polyfunctional molecule and their preferential partial deprotection is required. Selective unmaslung of one or more of such protecting groups has been achieved in some cases.4 Of particular interest to us was the regioselective deprotection of the 2-0-benzyl group of per- 0-benzylated 1,6-anhydromannopyranose mediated by SnC14 (1) and Tic14 (2). Considering the greater susceptibility of p-methoxybenzyl (PMBn) ethers to Lewis acid catalysts5 and the complexation of benzyl ethers with 14b and 24b16 we decided to investigate the action of 1 on PMBn ethers of some carbohydrates, We expected the methoxy substituent on the phenyl group in the PMBn moiety to enhance complexation with 1, possibly resulting in a facile reaction under mild conditions. Since 1 is a strong Lewis acid, the need to use chlorotrimethylsilane and anisole, as in the tin(I1)chloride- chlorotrimethylsilane-anisole system for deprotection of PMBn ethers, can be eliminated. Moreover, the complex formation in the case of 1 presents possibilities for unusual regioselectivity in partial de-0-p-methoxybenzylation reactions, a problem that has not been addressed in reports on the oxidative cleavage of PMBn ethers by 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ)7 ceric ammonium nitrate (CAN),8 N-bromosuccinimide (NBS)8 or bromine8.

  相似文献   

11.
The first total synthesis of lamellarin α 20-sulfate (1), a selective inhibitor of HIV-1 integrase, has been completed. The lamellarin α core in which 13-OH and 20-OH were differentially protected by isopropyl and benzyl groups, respectively, was constructed by using Hinsberg-type pyrrole synthesis and Suzuki-Miyaura coupling as the key reactions. The 20-sulfate was prepared by a sequence including debenzylation of 20-OBn, 2,2,2-trichloroethylsulfation of the resulting 20-OH, deprotection of 13-Oi-Pr, and final reductive cleavage of the 2,2,2-trichloroethyl ester.  相似文献   

12.
王玮  李小六  张平竹  陈华 《中国化学》2008,26(1):208-212
羟基保护是糖化学合成的重要组成部分,羟基选择性部分保护的糖类衍生物中间体的合成往往需要多步反应或使用特殊试剂。本文以不同的甲基O-叔丁基二甲硅基糖苷为起始物,探讨了利用碱性条件下的硅基迁移反应合成选择性保护的糖类衍生物中间体的方法。例如,甲基6-O-叔丁基二甲硅基a-D-吡喃葡萄糖苷在NaH及BnBr 作用下进行苄基化反应,随后在酸性条件下脱去硅基,主要得到6-O→4-O硅基迁移的产物,甲基2,3,6-三-O-苄基a-D-吡喃葡萄糖苷。提出了一种简便合成选择性苄基保护的甲基2,3,6-三-O-苄基a-D-吡喃葡萄糖苷的有效方法。  相似文献   

13.
The first strategy for bringing about enantioselective azlactone dynamic kinetic resolution to generate orthogonally protected amino acids has been developed. In the presence of a C2symmetric squaramide‐based catalyst, benzyl alcohol reacts with novel yet readily prepared tetrachloroisopropoxycarbonyl‐substituted azlactones to generate trapped phthalimide products of significant synthetic interest with excellent enantiocontrol. These materials are masked amino acids which are demonstrably orthogonally protected: cleavage of the phthalimide can be achieved in the presence of the ester and vice versa. This process could be utilized to bring about a highly stereoselective ligation‐type coupling of protected serines (at stoichiometric loadings) with racemic azlactones derived from both natural and abiotic amino acids. After deprotection, a subsequent base‐mediated O→N acyl transfer occurs to form a dipeptide.  相似文献   

14.
We report a solid‐phase strategy for total synthesis of the peptidic natural product yaku'amide B ( 1 ), which exhibits antiproliferative activity against various cancer cells. Its linear tridecapeptide sequence bears four β,β‐dialkylated α,β‐dehydroamino acid residues and is capped with an N‐terminal acyl group (NTA) and a C‐terminal amine (CTA). To realize the Fmoc‐based solid‐phase synthesis of this complex structure, we developed new methods for enamide formation, enamide deprotection, and C‐terminal modification. First, traceless Staudinger ligation enabled enamide formation between sterically encumbered alkenyl azides and newly designed phosphinophenol esters. Second, application of Eu(OTf)3 led to chemoselective removal of the enamide Boc groups without detaching the resin linker. Finally, resin‐cleavage and C‐terminus modification were simultaneously achieved with an ester–amide exchange reaction using CTA and AlMe3 to deliver 1 in 9.1 % overall yield (24 steps from the resin).  相似文献   

15.
天然氨基甘油糖脂sn-1,2-dipalmitoyl-3-(N-palmitoyl-6-dehydroxy-6-amino-α-glucosyl)glycerol 3 和 sn-1-palmitoyl-2-myristoyl-3-(N-stearoyl-6-dehydroxy-6-amino-α-glucosyl)glycerol 4 通过简便有效的合成策略首次被合成。其关键步骤为:三氯亚胺酯糖基供体 10 与 (S)-isopropyleneglycerol 在乙醚溶液中发生糖苷化反应,立体选择性的生成3-O-(2,3,4-tri-O-benzyl-6-dehydroxy-6-benzyloxycarbonylamino-α-D- glucopyranoyl)-1,2-O-isopropylene-sn- glycerol 7。中间体 7 经过脱除丙酮叉、与不同的脂肪酸缩合、脱除保护基和选择性的在氨基上酰化,最终得到目标化合物 3 和 4。  相似文献   

16.
The cleavage of propargyl, allyl, benzyl, and PMB ethers by Pd(OH)2/C can be tuned in that order, by varying the reaction conditions. Other moieties such as C-C double bonds, esters, trityl ether, p-bromo and p-nitrobenzyl ethers are stable to these reaction conditions. Cleavage of allyl ethers can be made catalytic by using 1:1 mixture of Pd(OH)2/C and Pd/C. The synthetic potential of the selective ether cleaving ability of Pd(OH)2/C, essentially under neutral conditions, has been demonstrated by an efficient synthesis of a precursor for the preparation of an inositol pyrophosphate derivative.  相似文献   

17.
Dendrigraft poly(ϵ‐caprolactone)s with high molecular weight and narrow polydispersity are synthesized via a convenient generation‐growth approach. Copolymerization of ϵ‐caprolactone (CL) and 4‐(2‐benzoxyethoxy)‐ϵ‐caprolactone (BECL) with stannous octanoate as a catalyst affords a functionalized poly(ϵ‐caprolactone) (PCL) with benzyl‐protected hydroxyl side groups. After removal of benzyl groups by palladium‐catalyzed hydrogenolysis, the graft copolymerization of CL and BECL onto the hydroxyl‐bearing linear polyester (zero‐generation) affords the first‐generation graft polyester. Further deprotection and graft polymerization cycles led to dendrigraft polyesters. Molecular weights are multiplied in each graft copolymerization. The second‐generation dendrigraft poly(ϵ‐caprolactone) has an Mw of 236 000 g·mol−1 and Mw/Mn of 1.53.  相似文献   

18.
Generally, protection and deprotection procedures of amino groups are required in preparing propargyl ether‐containing benzoxazines. In this study, we report a facile, deprotection‐free preparation of a propargyl ether‐containing phosphinated benzoxazine (2) from the nucleophilic substitution of a phenolic OH‐containing phosphinated benzoxazine (1) and propargyl bromide in the catalysis of potassium carbonate. The structure of (2) was characterized and confirmed by a high‐resolution mass spectrum, 1H, 13C, 1H‐1H, 1H‐13C nuclear magnetic resonance (NMR) spectra, and X‐ray single crystal diffractogram. infrared (IR) and differential scanning calorimetry were used to monitor the ring‐opening of benzoxazine and crosslinking of propargyl ether. The microstructure and the structure–property relationship of the resulting homopolymers and copolymers are discussed. The Tg of homopolymer of (2) is 208 °C by dynamic mechanical analysis, the coefficient of thermal expansion is 43 ppm/°C, and Td 5% (N2) is 393 °C, respectively, which are higher than those of the homopolymer of (1) . Similar trends were observed in the copolymerization system. The results demonstrate the beneficial effect of crosslinking afforded by the propargyl ether group is higher than that by the phenolic OH group. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
Recently we have reported undesirable and frequent deprotection of the TBDMS protective group of a variety of hydroxyl functions occurred under neutral and mild hydrogenation conditions using 10% Pd/C in MeOH. The deprotection of silyl ethers is susceptible to significant solvent effect. TBDMS and TES protecting groups were selectively cleaved in the presence of acid-sensitive functional groups such as TIPS ether, TBDPS ether and dimethyl acetal under hydrogenation condition using 10% Pd/C in MeOH. In contrast, chemoselective hydrogenation of reducible functional groups such as acetylene, olefin and benzyl ether, proceeds in the presence of TBDMS or TES ethers in AcOEt or MeCN.  相似文献   

20.
The synthesis of α‐benzamido‐α‐benzyl lactones 23 of various ring size was achieved either via ‘direct amide cyclization’ by treatment of 2‐benzamido‐2‐benzyl‐ω‐hydroxy‐N,N‐dimethylalkanamides 21 in toluene at 90 – 110° with HCl gas or by ‘ring transformation’ of 4‐benzyl‐4‐(ω‐hydroxyalkyl)‐2‐phenyl‐1,3‐oxazol‐5(4H)‐ones under the same conditions. The precursors were obtained by C‐alkylations of 4‐benzyl‐2‐phenyl‐1,3‐oxazol‐5(4H)‐one ( 15 ) with THP‐ or TBDMS‐protected ω‐hydroxyalkyl iodides. Ring opening of the THP‐protected oxazolones by treatment with Me2NH followed by deprotection of the OH group gave the diamides 21 , whereas deprotection of the TBDMS series of oxazolones 25 with TBAF followed by treatment with HCl gas led to the corresponding lactones 23 in a one‐pot reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号