首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monocationic bis‐allyl complexes [Ln(η3‐C3H5)2(thf)3]+[B(C6X5)4]? (Ln=Y, La, Nd; X=H, F) and dicationic mono‐allyl complexes of yttrium and the early lanthanides [Ln(η3‐C3H5)(thf)6]2+[BPh4]2? (Ln=La, Nd) were prepared by protonolysis of the tris‐allyl complexes [Ln(η3‐C3H5)3(diox)] (Ln=Y, La, Ce, Pr, Nd, Sm; diox=1,4‐dioxane) isolated as a 1,4‐dioxane‐bridged dimer (Ln=Ce) or THF adducts [Ln(η3‐C3H5)3(thf)2] (Ln=Ce, Pr). Allyl abstraction from the neutral tris‐allyl complex by a Lewis acid, ER3 (Al(CH2SiMe3)3, BPh3) gave the ion pair [Ln(η3‐C3H5)2(thf)3]+[ER31‐CH2CH?CH2)]? (Ln=Y, La; ER3=Al(CH2SiMe3)3, BPh3). Benzophenone inserts into the La? Callyl bond of [La(η3‐C3H5)2(thf)3]+[BPh4]? to form the alkoxy complex [La{OCPh2(CH2CH?CH2)}2(thf)3]+[BPh4]?. The monocationic half‐sandwich complexes [Ln(η5‐C5Me4SiMe3)(η3‐C3H5)(thf)2]+[B(C6X5)4]? (Ln=Y, La; X=H, F) were synthesized from the neutral precursors [Ln(η5‐C5Me4SiMe3)(η3‐C3H5)2(thf)] by protonolysis. For 1,3‐butadiene polymerization catalysis, the yttrium‐based systems were more active than the corresponding lanthanum or neodymium homologues, giving polybutadiene with approximately 90 % 1,4‐cis stereoselectivity.  相似文献   

2.
A chemically non‐innocent pyrrole‐based trianionic (ONO)3? pincer ligand within [(pyr‐ONO)TiCl(thf)2] ( 2 ) can access the dianionic [(3H‐pyr‐ONO)TiCl2(thf)] ( 1‐THF ) and monoanionic [(3H,4H‐pyr‐ONO)TiCl2(OEt2)][B{3,5‐(CF3)2C6H3}4] ( 3‐Et2O ) states through remote protonation of the pyrrole γ‐C π‐bonds. The homoleptic [(3H‐pyr‐ONO)2Zr] ( 4 ) was synthesized and characterized by X‐ray diffraction and NMR spectroscopy in solution. The protonation of 4 by [H(OEt2)2][B{C6H3(CF3)2}4] yields [(3H,4H‐pyr‐ONO)(3H‐pyr‐ONO)Zr][B{3,5‐(CF3)2C6H3}4] ( 5 ), thus demonstrating the storage of three protons.  相似文献   

3.
The complexes Er(Me2pz)3(thf) and Ln(Ph2pz)3(thf)n (Ln = Sc, Y, Gd, Er, n = 2; Ln = Lu, n = 3) (Me2pz? = 3,5-dimethylpyrazolate, thf = tetrahydrofuran, Ph2pz? = 3,5-diphenylpyrazolate) have been prepared by reaction of the lanthanoid metal with bis(pentafluorophenyl)mercury and the pyrazole in thf. The Ln(Ph2pz)3(thf)2 complexes are considered to be eight coordinate with three η2-Ph2pz ligands. Other lanthanoid pyrazolate complexes, Y(pz)3(thf)2, La(Me2pz)3(thf), Cp2Ln(Me2pz)(thf)n (Ln = Y, Lu, n = 0; Ln = Lu, n = 1), (C5Me5)2Y(pz)(thf), (C5Me5)2Y(Mepz)(thf), (C5Me5)2Y(Me2pz)(thf)2 (pz? = pyrazolate, Mepz? = 3-methylpyrazolate, Cp = cyclopentadienyl) have been synthesized by reaction of LnCl3, Cp2LnCl, or (C5Me5)2LnCl with the appropriate sodium pyrazolate in thf. The structure of Ln(Me2pz)3(thf) (Ln = La or Er) is considered to be a symmetrical dimer with four chelating and two bridging Me2pz groups, and two bridging thf ligands, whereas the cyclopentadienyl complexes are most likely dimers with bridging pyrazolate groups, and lattice thf of solvation.  相似文献   

4.
The reactions of lanthanide tris(borohydrides) Ln(BH4)3(thf)3 (Ln = Sm or Nd) with 2 equiv. of lithium N,N′-diisopropyl-N′-bis(trimethylsilyl)guanidinate in toluene produced the [(Me3Si)2NC(NPri)2]Ln(BH4)2Li(thf)2 complexes (Ln = Sm or Nd), which were isolated in 57 and 42% yields, respectively, by recrystallization from hexane. X-ray diffraction experiments and NMR and IR spectroscopic studies demonstrated that the reactions afford monomeric ate complexes, in which the lanthanide and lithium atoms are linked to each other by two bridging borohydride groups. The complexes exhibit catalytic activity in polymerization of methyl methacrylate. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 441–445, March, 2007.  相似文献   

5.
The preparation and characterization of a series of neutral rare‐earth metal complexes [Ln(Me3TACD)(η3‐C3H5)2] (Ln=Y, La, Ce, Pr, Nd, Sm) supported by the 1,4,7‐trimethyl‐1,4,7,10‐tetraazacyclododecane anion (Me3TACD?) are reported. Upon treatment of the neutral allyl complexes [Ln(Me3TACD)(η3‐C3H5)2] with Brønsted acids, monocationic allyl complexes [Ln(Me3TACD)(η3‐C3H5)(thf)2][B(C6X5)4] (Ln=La, Ce, Nd, X=H, F) were isolated and characterized. Hydrogenolysis gave the hydride complexes [Ln(Me3TACD)H2]n (Ln=Y, n=3; La, n=4; Sm). X‐ray crystallography showed the lanthanum hydride to be tetranuclear. Reactivity studies of [Ln(Me3TACD)R2]n (R=η3‐C3H5, n=0; R=H, n=3,4) towards furan derivatives includes hydrosilylation and deoxygenation under ring‐opening conditions.  相似文献   

6.
The tris(2,4‐dimethylpentadienyl) complexes [Ln(η5‐Me2C5H5)3] (Ln = Nd, La, Y) are obtained analytically pure by reaction of the tribromides LnBr3·nTHF with the potassium compound K(Me2C5H5)(thf)n in THF in good yields. The structural characterization is carried out by X‐ray crystal structure analysis and NMR‐spectroscopically. The tris complexes can be transformed into the dimeric bis(2,4‐dimethylpentadienyl) complexes [Ln2(η5‐Me2C5H5)4X2] (Ln, X: Nd, Cl, Br, I; La, Br, I; Y, Br) by reaction with the trihalides THF solvates in the molar ratio 2:1 in toluene. Structure and bonding conditions are determined for selected compounds by X‐ray crystal structure analysis and NMR‐spectroscopically in general. The dimer‐monomer equilibrium existing in solution was investigated NMR‐spectroscopically in dependence of the donor strength of the solvent and could be established also by preparation of the corresponding monomer neutral ligand complexes [Ln(η5‐Me2C5H5)2X(L)] (Ln, X, L: Nd, Br, py; La, Cl, thf; Br, py; Y, Br, thf). Finally the possibilities for preparation of mono(2,4‐dimethylpentadienyl)lanthanoid(III)‐dibromid complexes are shown and the hexameric structure of the lanthanum complex [La6(η5‐Me2C5H5)6Br12(thf)4] is proved by X‐ray crystal structure analysis.  相似文献   

7.
Reaction of [CpnMCl4?x] (M=V: n=x=2; M=Nb: n=1, x=0) or [Cp*TaCl4] (Cp=η5‐C5H5, Cp*=η5‐C5Me5), with [LiBH4?thf] at ?70 °C followed by thermolysis at 85 °C in the presence of [BH3?thf] yielded the hydrogen‐rich metallaboranes [(CpM)2(B2H6)2] ( 1 : M=V; 2 : M = Nb) and [(Cp*Ta)2(B2H6)2] ( 3 ) in modest to high yields. Complexes 1 and 3 are the first structurally characterized compounds with a metal–metal bond bridged by two hexahydroborate (B2H6) groups forming a symmetrical complex. Addition of [BH3?thf] to 3 results in formation of a metallaborane [(Cp*Ta)2B4H8(μ‐BH4)] ( 4 ) containing a tetrahydroborate ligand, [BH4]?, bound exo to the bicapped tetrahedral cage [(Cp*Ta)2B4H8] by two Ta‐H‐B bridge bonds. The interesting structural feature of 4 is the coordination of the bridging tetrahydroborate group, which has two B? H bonds coordinated to the tantalum atoms. All these new metallaboranes have been characterized by mass, 1H, 11B, and 13C NMR spectroscopy and elemental analysis and the structural types were established unequivocally by crystallographic analysis of 1 – 4 .  相似文献   

8.
Amido Ligands for the Synthesis of Polynuclear Lanthanoid Complexes By 1 : 1 reaction of LnBr3 with NaNHPh in THF the Rare-Earth Complexes [Ln2Br42-NHPh)2(thf)5] (Ln = Sm ( 1 ), Ln = Gd ( 2 )) with two bridging anilido ligands are obtained. In the system LnBr3/NaNHPh/(Me2SiO)3 the tetranuclear compounds [Ln44-O)(NHPh)3(OSiMe2NPh)6Na5(thf)7] · THF (Ln = Gd ( 3 ), Ln = Yb ( 4 )) can be built up. They have a central μ4-oxygene atom in the Ln4-tetrahedron. It has an oxa-dimethylsilyl-N-phenylamido ligand over all edges and an anilido ligand on three vertexes. By this reaction small amount of [Na4(thf)6Yb2(OSiMe2NPhSiMe2O)2(OSiMe2NPh)2(NHPh)2] ( 5 ) with a O- and N-bridged Yb–Na polyhedron and N-phenyl-bis(dimethylsilanolato)-ligands coordinating μ22 with its oxygen atoms are obtained. Reaction of Lanthanideshalides with LiNHtBu leads to dimeric complexes. The formation of bridging oxasilylamido ligands is also observed. The compound [Li2Ln(OSiMe2NtBu)2(HNtBu)(thf)]2 (Ln=Sm ( 6 ), Gd ( 7 ) and Yb ( 8 )) contains now an O- and N-bridged Ln–Li polyhedron. (Crystal Data of 1–8 see ‘‘Inhaltsverzeichnis”︁”︁).  相似文献   

9.
Synthesis of Dimethoxyethane and Tetrahydrofuran Complexes of Rare‐Earth Nitrates – Solid State Structure of Pr(NO3)3(thf)4 The solvated rare‐earth nitrates Ln(NO3)3(thf)n (Ln = Pr, n = 4 ( 1 ); Ln = Ho ( 2 ), Yb ( 3 ), n = 3 and Ln(NO3)3(dme)2; Ln = Pr ( 4 ), Ho ( 5 )) were obtained from Ln(NO3)3(H2O)x and HC(OCH3)3. Pale green thermally labile crystals of 1 were characterized by X‐ray crystallography. The praseodymium atoms in two independent monomeric molecules show capped trigonal prismatic and pentagonal bipyramidal coordination, respectively.  相似文献   

10.
The mechanism of the reactions of aryl/heteroaryl halides with aryl Grignard reagents catalyzed by [FeIII(acac)3] (acac=acetylacetonate) has been investigated. It is shown that in the presence of excess PhMgBr, [FeIII(acac)3] affords two reduced complexes: [PhFeII(acac)(thf)n] (n=1 or 2) (characterized by 1H NMR and cyclic voltammetry) and [PhFeI(acac)(thf)]? (characterized by cyclic voltammetry, 1H NMR, EPR and DFT). Whereas [PhFeII(acac)(thf)n] does not react with any of the investigated aryl or heteroaryl halides, the FeI complex [PhFeI(acac)(thf)]? reacts with ArX (Ar=Ph, 4‐tolyl; X=I, Br) through an inner‐sphere monoelectronic reduction (promoted by halogen bonding) to afford the corresponding arene ArH together with the Grignard homocoupling product PhPh. In contrast, [PhFeI(acac)(thf)]? reacts with a heteroaryl chloride (2‐chloropyridine) to afford the cross‐coupling product (2‐phenylpyridine) through an oxidative addition/reductive elimination sequence. The mechanism of the reaction of [PhFeI(acac)(thf)]? with the aryl and heteroaryl halides has been explored on the basis of DFT calculations.  相似文献   

11.
Treatment of [K(BIPMMesH)] (BIPMMes={C(PPh2NMes)2}2?; Mes=C6H2‐2,4,6‐Me3) with [UCl4(thf)3] (1 equiv) afforded [U(BIPMMesH)(Cl)3(thf)] ( 1 ), which generated [U(BIPMMes)(Cl)2(thf)2] ( 2 ), following treatment with benzyl potassium. Attempts to oxidise 2 resulted in intractable mixtures, ligand scrambling to give [U(BIPMMes)2] or the formation of [U(BIPMMesH)(O)2(Cl)(thf)] ( 3 ). The complex [U(BIPMDipp)(μ‐Cl)4(Li)2(OEt2)(tmeda)] ( 4 ) (BIPMDipp={C(PPh2NDipp)2}2?; Dipp=C6H3‐2,6‐iPr2; tmeda=N,N,N′,N′‐tetramethylethylenediamine) was prepared from [Li2(BIPMDipp)(tmeda)] and [UCl4(thf)3] and, following reflux in toluene, could be isolated as [U(BIPMDipp)(Cl)2(thf)2] ( 5 ). Treatment of 4 with iodine (0.5 equiv) afforded [U(BIPMDipp)(Cl)2(μ‐Cl)2(Li)(thf)2] ( 6 ). Complex 6 resists oxidation, and treating 4 or 5 with N‐oxides gives [{U(BIPMDippH)(O)2‐ (μ‐Cl)2Li(tmeda)] ( 7 ) and [{U(BIPMDippH)(O)2(μ‐Cl)}2] ( 8 ). Treatment of 4 with tBuOLi (3 equiv) and I2 (1 equiv) gives [U(BIPMDipp)(OtBu)3(I)] ( 9 ), which represents an exceptionally rare example of a crystallographically authenticated uranium(VI)–carbon σ bond. Although 9 appears sterically saturated, it decomposes over time to give [U(BIPMDipp)(OtBu)3]. Complex 4 reacts with PhCOtBu and Ph2CO to form [U(BIPMDipp)(μ‐Cl)4(Li)2(tmeda)(OCPhtBu)] ( 10 ) and [U(BIPMDipp)(Cl)(μ‐Cl)2(Li)(tmeda)(OCPh2)] ( 11 ). In contrast, complex 5 does not react with PhCOtBu and Ph2CO, which we attribute to steric blocking. However, complexes 5 and 6 react with PhCHO to afford (DippNPPh2)2C?C(H)Ph ( 12 ). Complex 9 does not react with PhCOtBu, Ph2CO or PhCHO; this is attributed to steric blocking. Theoretical calculations have enabled a qualitative bracketing of the extent of covalency in early‐metal carbenes as a function of metal, oxidation state and the number of phosphanyl substituents, revealing modest covalent contributions to U?C double bonds.  相似文献   

12.
Organometallic Compounds of Copper. XX On the Reaction of the Alkyne Copper(I) Complexes [CuCl(S‐Alkyne)] and [Cu2Br2(S‐Alkyne)(dms)] (S‐Alkyne = 3,3,6,6‐Tetramethyl‐1‐thiacyclohept‐4‐yne; dms = Dimethylsulfide) with the Lithiumorganyls Phenyllithium und Fluorenyllithium The alkyne copper(I) bromide complex [Cu2Br2(S‐Alkyne)(dms)] ( 3 b ) (S‐Alkyne = 3,3,6,6‐tetramethyl‐1‐thiacyclohept‐4‐yne; dms = dimethylsulfide) reacts with phenyllithium to form a tetranuclear copper(I) complex of the composition [Cu4(C6H5)2(S‐Alkenyl)2] ( 7 ) in low yield (4%). The reaction of the alkyne copper(I) chloride complex [CuCl(S‐Alkyne)] ( 2 a ) with fluorenyllithium in tetrahydrofuran (thf) affords a lithium cuprate of the composition [Li(thf)4]+ [Cu2(fluorenyl)3(S‐Alkyne)2] ( 8 ) (yield 32%). The structures of both new complexes 7 and 8 were determined by X–ray diffraction.  相似文献   

13.
The reaction of YbCl3 with two equivalents of NaN‐(SiMe3)2 has afforded a mixture of several ytterbium bis(trimethylsilyl) amides with the known complexes [Yb{N(SiMe3)2}2(μ‐Cl)(thf)]2 ( 1 ) and [Yb{N(SiMe3)2}3]( 4 ) as the main products and the cluster compound [Yb3Cl4O{N(SiMe3)2}3(thf)3]( 2 ) as a minor product. Treatment of 1 and 2 with hot n‐heptane gave the basefree complex [Yb{N(SiMe3)2}2(μ‐Cl)]2 ( 3 ) in small yield. The structures of compounds 1—4 and the related peroxo complex [Yb2{N(SiMe3)2}4(μ‐O2)(thf)2]( 5 ) have been investigated by single crystal X‐ray diffraction. In the solid‐state, 3 shows chlorobridged dimers with terminal amido ligands (av. Yb—Cl = 262.3 pm, av. Yb—N = 214.4 pm). Additional agostic interactions are observed from the ytterbium atoms to four methyl carbon atoms of the bis(trimethylsilyl)amido groups (Yb···C = 284—320 pm). DFT calculations have been performed on suitable model systems ([Yb2(NH2)4(μ‐Cl)2(OMe2)2]( 1m ), [Yb2(NH2)4(μ‐Cl)2]( 3m ), [Yb‐(NH2)3]( 4m ), [Yb2(NH24(μ‐O2)(OMe2)2]( 5m ), [Yb{N‐(SiMe3)2}2Cl] ( 3m/2 ) and Ln(NH2)2NHSiMe3 (Ln = Yb ( 6m ), Y ( 7m )) in order to rationalize the different experimentally observed Yb—N distances, to support the assignment of the O—O stretching vibration (775 cm ‐1) in the Raman spectrum of complex 5 and to examine the nature of the agostic‐type interactions in σ‐donorfree 3 .  相似文献   

14.
The neodymium borohydride [Li(thf)4]2[Nd2(μ‐Cl)2(BH4)6(thf)2] was synthesized from neodymium chloride and lithium borohydride. The compound crystallized in the triclinic crystal system, space group (No. 2) with the cell constants a = 14.8613(11), b = 17.8715(13), c = 23.5846(18) Å, α = 100.760(6), β = 90.648(6) and γ = 103.294(6)°. Each neodymium atom is coordinated by three borohydride anions and a THF molecule whereas two neodymium cations are bridged through two chloro ligands. The charge of the [Nd2(μ‐Cl)2(BH4)6(thf)2]2− anion, which represents the first structurally characterized binuclear mixed borohydride chlorido complex, is compensated by two [Li(thf)4]+ cations.  相似文献   

15.
The first 4d/4f polyphosphides were obtained by reaction of the divalent metallocenes [Cp*2Ln(thf)2] (Ln = Sm, Yb) with [{CpMo(CO)2}2(μ,η2:2-P2)] or [Cp*Mo(CO)23-P3)]. Treatment of [Cp*2Ln(thf)2] (Ln = Sm, Yb) with [{CpMo(CO)2}2(μ,η2:2-P2)] gave the 16-membered bicyclic compounds [(Cp2*Ln)2P2(CpMo(CO)2)4] (Ln = Sm, Yb) as the major products. From the reaction involving samarocene, the cyclic P4 complex [(Cp*2Sm)2P4(CpMo(CO)2)2] and the cyclic P5 complex [(Cp*2Sm)3P5(CpMo(CO)2)3] were also obtained as minor products. In each reaction, the P2 unit is reduced and a rearrangement occurred. In dedicated cases, a P–P bond formation takes place, which results in a new aggregation of the central phosphorus scaffold. In the reactions of [Cp*2Ln(thf)2] (Ln = Sm, Yb) with [Cp*Mo(CO)2P3] a new P–P bond is formed by reductive dimerization and the 4d/4f hexaphosphides [(Cp*2Ln)2P6(Cp*Mo(CO)2)2] (Ln = Sm, Yb) were obtained.  相似文献   

16.
Summary Three new pyridazine complexes of manganese(I): [MnBr(pyr)2(CO)3] (1), [Mn(pyr)(CO)5][ClO4] (2) and [Mn(pyr)3(CO)3][ClO4] (3) (pyr=pyridazine) have been prepared and their i.r. and variable-temperature1H n.m.r. spectra investigated.  相似文献   

17.
A general procedure was developed for the synthesis of diarylcalcium complexes by addition of KOtBu to arylcalcium iodides in THF. Intermediate arylcalcium tert‐butanolate dismutates immediately leading to insoluble tert‐butanolate precipitates of calcium. Depending on the steric demand and denticity of additional neutral aliphatic azabases, mononuclear or dinuclear complexes trans‐[Ca(αNaph)2(thf)4] ( 1 ), [Ca(β‐Naph)2(thf)4] ( 2 ), [Ca(Tol)2(tmeda)]2 ( 3 ), [Ca(Ph)2(tmeda)]2 ( 4 ), [Ca(Ph)2(pmdta)(thf)] ( 5 ), [Ca(hmteta)(Ph)2] ( 6 ), and [Ca([18]C‐6)(Ph)2] ( 7 ) were isolated (Naph=naphthyl; meda=N,N,N′,N′‐tetramethylethylenediamine; pmdta= N,N,N′,N′′,N′′‐pentamethyldiethylenetriamine; hmteta=N,N,N′,N′′,N′′′,N′′′‐hexamethyltriethylenetetramine). The Ca?C bond lengths vary between 250.8 and 263.5 pm, the ipso‐carbon atoms show low‐field‐shifted resonances in the 13C NMR spectra.  相似文献   

18.
Lithiation of 6-methyl-2-(trimethylsilylamino)pyridine (APyTMSH) occurs smoothly in tetrahydrofuran (thf) affording [Li(APyTMS)(thf)]2 (1). Treatment of anhydrous lanthanoid chlorides (LnCl3, Ln=Gd, Er) with 1.5 equivalents of (1) yields the solvent-free homoleptic tris–amido complexes [Ln(APyTMS)3], (Ln=Gd (2); Ln=Er (3)). Similar treatment of LnCl3 (Ln=Gd, Er) with one equivalents of 1 putatively generates the heteroleptic species [Ln(APyTMS)2Cl], (Ln=Gd (4); Ln=Er (5)) in situ, however, these compounds undergo redistribution in hexane to yield homoleptic 2 and 3 and the anhydrous lanthanoid halides (Ln=Gd, (6), Ln=Er (7)) and were therefore not fully characterised. These lanthanoid reagents are extremely moisture sensitive as examplified by the low yield isolation of [APyH2·H]2[ErCl5(thf)] during one prepartion of 3. The structures of compounds 1, 2, 3 and 8 were characterised by X-ray crystallographic methods. The X-ray structure of 1 is a centrosymmetric dimer similar to its diethyl ether analogue. Compounds 2 and 3 are six-coordinate homoleptic mononuclear species and compound 8 comprises the unprecedented [ErCl5(thf)] anion within an intricate hydrogen-bonded ionic system.  相似文献   

19.
The methylation of the uncoordinated nitrogen atom of the cyclometalated triruthenium cluster complexes [Ru3(μ‐H)(μ‐κ2N1,C6‐2‐Mepyr)(CO)10] ( 1 ; 2‐MepyrH=2‐methylpyrimidine) and [Ru3(μ‐H)(μ‐κ2N1,C6‐4‐Mepyr)(CO)10] ( 9 ; 4‐MepyrH=4‐methylpyrimidine) gives two similar cationic complexes, [Ru3(μ‐H)(μ‐κ2N1,C6‐2,3‐Me2pyr)(CO)10]+( 2 +) and [Ru3(μ‐H)(μ‐κ2N1,C6‐3,4‐Me2pyr)(CO)10]+ ( 9 +), respectively, whose heterocyclic ligands belong to a novel type of N‐heterocyclic carbenes (NHCs) that have the Ccarbene atom in 6‐position of a pyrimidine framework. The position of the C‐methyl group in the ligands of complexes 2 + (on C2) and 9 + (on C4) is of key importance for the outcome of their reactions with K[N(SiMe3)2], K‐selectride, and cobaltocene. Although these reagents react with 2 + to give [Ru3(μ‐H)(μ‐κ2N1,C6‐2‐CH2‐3‐Mepyr)(CO)10] ( 3 ; deprotonation of the C2‐Me group), [Ru3(μ‐H)(μ3‐κ3N1,C5,C6‐4‐H‐2,3‐Me2pyr)(CO)9] ( 4 ; hydride addition at C4), and [Ru6(μ‐H)26‐κ6N1,N1′,C5,C5′,C6,C6′‐4,4′‐bis(2,3‐Me2pyr)}(CO)18] ( 5 ; reductive dimerization at C4), respectively, similar reactions with 9 + have only allowed the isolation of [Ru3(μ‐H)(μ3‐κ2N1,C6‐2‐H‐3,4‐Me2pyr)(CO)9] ( 11 ; hydride addition at C2). Compounds 3 and 11 also contain novel six‐membered ring NHC ligands. Theoretical studies have established that the deprotonation of 2 + and 9 + (that have ligand‐based LUMOs) are charge‐controlled processes and that both the composition of the LUMOs of these cationic complexes and the steric protection of their ligand ring atoms govern the regioselectivity of their nucleophilic addition and reduction reactions.  相似文献   

20.
Rare‐earth‐metal borohydrides are known to be efficient catalysts for the polymerization of apolar and polar monomers. The bis‐borohydrides [{CH(PPh2NSiMe3)2}La(BH4)2(THF)] and [{CH(PPh2NSiMe3)2}Ln(BH4)2] (Ln=Y, Lu) have been synthesized by two different synthetic routes. The lanthanum and the lutetium complexes were prepared from [Ln(BH4)3(THF)3] and K{CH(PPh2NSiMe3)2}, whereas the yttrium analogue was obtained from in situ prepared [{CH(PPh2NSiMe3)2}YCl2]2 and NaBH4. All new compounds were characterized by standard analytical/spectroscopic techniques, and the solid‐state structures were established by single‐crystal X‐ray diffraction. The ring‐opening polymerization (ROP) of ε‐caprolactone initiated by [{CH(PPh2NSiMe3)2}La(BH4)2(THF)] and [{CH(PPh2NSiMe3)2}Ln(BH4)2] (Ln=Y, Lu) was studied. At 0 °C the molar mass distributions determined were the narrowest values (M?w/M?n=1.06–1.11) ever obtained for the ROP of ε‐caprolactone initiated by rare‐earth‐metal borohydride species. DFT investigations of the reaction mechanism indicate that this type of complex reacts in an unprecedented manner with the first B? H activation being achieved within two steps. This particularity has been attributed to the metallic fragment based on the natural bond order analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号