首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shiang YC  Lin CA  Huang CC  Chang HT 《The Analyst》2011,136(6):1177-1182
We have employed protein A-modified gold nanodots (PA-Au NDs) as a luminescence sensor for the detection of human immunoglobulin G (hIgG) in homogeneous solutions. The luminescent PA-Au NDs were prepared simply by mixing protein A with the luminescent Au NDs (average diameter: ca. 1.8 nm). The specific interactions that occur between protein A and hIgG allowed us to use the PA-Au NDs to detect hIgG selectively. Under optimal conditions [10 nM PA-Au NDs (two protein A molecules per Au ND), 5.0 mM phosphate buffer solution, pH 7.4], the PA-Au ND probe detected hIgG with high sensitivity (limit of detection = 10 nM) and remarkable selectivity (>50-fold) over other proteins. In an assay that took advantage of the competition between protein G and the PA-Au NDs for IgG, we detected protein G at concentrations as low as 85 nM. This PA-Au ND probe allowed determination of the hIgG concentration in plasma samples without any need for sample pretreatment. Our results exhibited a good linear correlation (R(2)=0.97) with those obtained using an enzyme-linked immunosorbent assay. Our simple, sensitive, and selective approach appears to hold practical potential for use in the clinical diagnosis of immune diseases associated with changes in hIgG levels.  相似文献   

2.
In this Personal Account, we briefly address our journey in developing photoluminescent nanomaterials for sensing purposes, with a focus on gold nanodots (Au NDs). Their synthetic strategies, optical properties, and sensing applications are emphasized. The Au NDs can be simply prepared from the etching of small‐sized Au nanoparticles (<3 nm in diameter) by thiol compounds such as 11‐mercaptoundecanoic acid under alkaline conditions. This simple approach allows the preparation of various functional Au NDs by choosing different thiol compounds as etching agents. Since the optical properties of Au NDs are highly dependent on the core and shell of each Au ND, the selection of etching reagents is important. Over the years we have developed various sensing systems using Au NDs for the detection of metal ions, anions, and proteins, based on analyte‐induced photoluminescence quenching/enhancement of Au NDs as a result of changes in their oxidation state, shell composition, and structure.  相似文献   

3.
The use of gold nanoparticles as radiosensitizers is an effective way to boost the killing efficacy of radiotherapy while drastically limiting the received dose and reducing the possible damage to normal tissues. Herein, we designed aggregation‐induced emission gold clustoluminogens (AIE‐Au) to achieve efficient low‐dose X‐ray‐induced photodynamic therapy (X‐PDT) with negligible side effects. The aggregates of glutathione‐protected gold clusters (GCs) assembled through a cationic polymer enhanced the X‐ray‐excited luminescence by 5.2‐fold. Under low‐dose X‐ray irradiation, AIE‐Au strongly absorbed X‐rays and efficiently generated hydroxyl radicals, which enhanced the radiotherapy effect. Additionally, X‐ray‐induced luminescence excited the conjugated photosensitizers, resulting in a PDT effect. The in vitro and in vivo experiments demonstrated that AIE‐Au effectively triggered the generation of reactive oxygen species with an order‐of‐magnitude reduction in the X‐ray dose, enabling highly effective cancer treatment.  相似文献   

4.
《Electroanalysis》2018,30(1):57-66
Efficient, stable, and low‐cost electrocatalysts for the degradation and sensing of environment pollutants are essential components of clean environment monitoring. Here we report, one‐step synthesis and characterization of 1–3 nm diameter sized bi‐metallic AuAg nanodots (NDs) embedded in amine functionalized silicate sol‐gel matrix (SSG) and its electrochemical studies toward nitrobenzene. The SSG was used as a reducing agent as well as stabilizer for the prepared mono‐ and bi‐metallic nanoparticles (NPs). From the HRTEM, STEM‐EDS and XPS analyses, the bi‐metallic AuAg NDs were identified as an alloy and not the mixtures of Au and Ag NPs. Characteristic surface plasmon resonance (SPR) band between the Au and Ag NPs SPR absorption region was noticed for the prepared AuAg NDs. The AuAg alloy NDs with different concentrations of Au and Ag (Au25Ag75, Au50Ag50 and Au75Ag25 NDs) modified electrodes exhibited synergistic electrocatalytic effect than did the Au and Ag NPs towards nitrobenzene reduction and detection. Together with ultra‐small size and exceptional colloidal stability features within these SSG‐AuAg NDs pave convenient way for nanotechnology‐based catalysts development and sensor applications.  相似文献   

5.
Metal nanoparticles (NPs) have attracted much attention in many fields due to their intrinsic characteristics. It is generally accepted that smaller NPs (1.5–3 nm) are more active than larger NPs, and reverse cases are very rare. We report here the direct aerobic oxidative amide synthesis from aldehydes and amines catalyzed by polymer‐incarcerated gold (Au) NPs. A unique correlation between imine/amide selectivity and size of NPs was discovered; Au‐NPs of medium size (4.5–11 nm) were found to be optimal. High yields were obtained with a broad range of substrates, including primary amines. Au‐NPs of medium size could be recovered and reused several times without loss of activity, and they showed good activity and selectivity in amide formation from alcohols and amines.  相似文献   

6.
Anthraquinone–lectin hybrids were effectively synthesized using water‐soluble anthraquinone derivative 11 with concanavalin A (ConA) and hygrophorus russula lectin (HRL) to give anthraquinone–ConA ( 16 ) and anthraquinone–HRL ( 17 ) hybrids, respectively. These anthraquinone–lectin hybrids effectively and selectively degraded oligosaccharides containing a mannose residue as a non‐reducing terminal sugar, which has affinity for ConA and HRL, under photo‐irradiation with long‐wavelength UV light without additives and under neutral conditions. In addition, anthraquinone–HRL ( 17 ) selectively photo‐degraded only Man(α1,6)Man, which has a high affinity for HRL, among several mannosides by recognition of both the type and glycosidic linkage profile of the sugar in an oligosaccharide.  相似文献   

7.
Silver and gold glyconanoparticles for colorimetric bioassays   总被引:1,自引:0,他引:1  
The color changes associated with the aggregation of metal nanoparticles has led to the development of colorimetric-based assays for a variety of target species. We have examined both silver- and gold-based nanoparticles in order to establish whether either metal exhibits optimal characteristics for bioassay development. These silver and gold nanoparticles have been stabilized with a self-assembled monolayer of a mannose derivative (2-mercaptoethyl alpha-d-mannopyranoside) with the aim of inducing aggregation by exploiting the well-known interaction between mannose and the lectin Concanavalin A (Con A). Both metal glyconanoparticles were determined to be ca. 16 nm in diameter (using TEM measurements). Aggregation was observed on addition of Con A to both silver and gold nanoparticles resulting in a shift in the surface plasmon absorption band and a consequent color change of the solution, which was monitored using UV-visible spectrophotometry. Mannose-stabilized silver nanoparticles at a concentration of 3 nM provide an assay for Con A with the largest linear range (between 0.08 and 0.26 microM). Additionally, the kinetic rate of aggregation of the silver-nanoparticle-based bioassay was significantly greater than that of the gold-nanoparticle system. However, in terms of sensitivity, the mannose-stabilized gold-nanoparticle-based assay was optimum with a limit of detection of 0.04 microM Con A, as compared with a value of 0.1 microM obtained for the mannose-stabilized silver nanoparticles. Additionally, a lactose derivative (11-mercapto-3,6,9-trioxaundecyl beta-D-lactoside) was used to stabilize gold nanoparticles to induce aggregation upon addition of the galactose specific lectin Ricinus communis agglutinin (RCA(120)). To examine the specificity of the bioassay, lactose-stabilized gold nanoparticles were mixed with a solution of mannose-stabilized silver nanoparticles to give an aggregation assay capable of detecting two different lectins. When either Con A or RCA(120) was added to the mixed glyconanoparticles, selective recognition of the respective natural ligand was shown by aggregation of a single metal nanoparticle. Centrifugation and removal of the aggregated species enabled further bioassay measurements using the second glyconanoparticle system.  相似文献   

8.
With new photocatalysts of gold nanoparticles supported on zeolite supports (Au/zeolite), oxidation of benzyl alcohol and its derivatives into the corresponding aldehydes can proceed well with a high selectivity (99 %) under visible‐light irradiation at ambient temperature. Au/zeolite photocatalysts were characterised by UV/Vis, X‐ray photoelectron spectroscopy (XPS), TEM, XRD, energy‐dispersive spectroscopy (EDS), Brauner–Emmet–Teller (BET) analyses, IR and Raman techniques. The surface plasmon resonance (SPR) effect of gold nanoparticles, the adsorption capability of zeolite supports and the molecular polarities of aromatic alcohols were demonstrated to have an essential correlation with the photocatalytic performances. In addition, the effects of light intensity, wavelength range and the role of molecular oxygen were investigated in detail. The kinetic study indicated that the visible‐light irradiation required much less apparent activation energy for photooxidation compared with thermal reaction. Based on the characterisation data and the photocatalytic performances, we proposed a possible photooxidation mechanism.  相似文献   

9.
The first examples of gold(I) trimethylsilylchalcogenolate complexes were synthesized and their reactivity showcased in the preparation of a novel gold–copper–sulfur cluster [Au4Cu4S4(dppm)2] (dppm=bis(diphenylphosphino)methane). The unprecedented structural chemistry of this compound gives rise to interesting optoelectronic properties, including long‐lived orange luminescence in the solid state. Through time‐dependent density functional theory calculations, this emission is shown to originate from ligand‐to‐metal charge transfer facilitated by Au???Cu metallophilic bonding.  相似文献   

10.
With the rich spectroscopic and luminescence properties associated with aurophilic Au?Au interactions, gold(I) complexes have provided an excellent platform for the design of luminescent chemosensors. This review concentrates on our recent exploration of luminescent gold(I) complexes in host–guest chemistry. Through the judicious design and choice of the functional receptor groups, specific chemosensors for cations and/or anions have been obtained. Utilization of sensing mechanisms based on the on–off switching of Au?Au interactions and photoinduced electron transfer (PET) has been successfully demonstrated. The two-coordinate nature of gold(I) complexes has also been utilized for the design of ditopic receptors through connecting both cation- and anion-binding sites within a single molecule.  相似文献   

11.
Detonation nanodiamonds (NDs) were studied by time‐of‐flight mass spectrometry (TOF MS). The formation of singly charged carbon clusters, C, with groups of clusters at n = 1–35, n ∼160–400 and clusters with n ∼8000 was observed. On applying either high laser energy or ultrasound, the position and intensity of the maxima change and a new group of clusters at n ∼70–80 is formed. High carbon clusters consist of an even number of carbons while the percentage of odd‐numbered clusters is quite low (≤5–10%). On increasing the laser energy, the maximum of ionization (at n ∼200 carbons) is shifted towards the lower m/z values. It is suggested that this is mainly due to the disaggregation of the original NDs. However, the partial destruction of NDs is also possible. The carbon clusters (n ∼2–35) are partially hydrogenated and the average value of the hydrogenation was 10–30%. Trace impurities in NDs like Li, B, Fe, and others were detected at high laser energy. Several matrices for ionizing NDs were examined and NDs themselves can also be used as a matrix for the ionization of various organic compounds. When NDs were used as a matrix for gold nanoparticles, the formation of various gold carbides AumCn was detected and their stoichiometry was determined. It was demonstrated that TOF MS can be used advantageously to analyze NDs, characterize their size distribution, aggregation, presence of trace impurities and surface chemistry. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The dimerization of alkanethiol mixtures (hexanethiol, octanethiol, and dodecanethiol) to form self‐assembled monolayers (SAMs) from headspace on nanoporous gold surfaces was studied for the first time using gas chromatography (GC/MS) and time‐of‐flight secondary ion mass spectrometry (TOF‐SIMS). The nanoporous gold surfaces were obtained by an acidic etching of a 585‐gold alloy. Field emission scanning electron microscopy (FE‐SEM) was utilized to study the change of the surface geometry and porosity of the gold surfaces before and after etching. Alkanethiols were deposited from the vapor phase above the thiol solutions (headspace) on nanoporous gold plates and nanoporous gold solid‐phase vmicroextraction (SPME) fibers. The nanoporous gold substrates were analyzed by TOF‐SIMS and GC/MS, respectively. The TOF‐SIMS spectra exhibited various gold–sulfur ion clusters and specific peaks related to the adsorption of thiols such as deprotonated monomers, thiolate–Au, dimers (e.g., dialkyl sulfides–Au and dialkyl disulfides–Au). The GC/MS analysis of headspace extractions of alkanethiol mixtures by nanoporous gold SPME fibers showed a high extraction efficiency of alkanethiol, dialkyl sulfide, and dialkyl disulfide when compared with the commercial SPME fibers (DVB‐CAR‐PDMS and CAR‐PDMS). Different GC/MS optimization factors were studied including the extraction time and desorption temperature.  相似文献   

13.
A systematic investigation into the relationship between the solid‐state luminescence and the intermolecular Au???Au interactions in a series of pyrazolate‐based gold(I) trimers; tris(μ2‐pyrazolato‐N,N′)‐tri‐gold(I) ( 1 ), tris(μ2‐3,4,5‐ trimethylpyrazolato‐N,N′)‐tri‐gold(I) ( 2 ), tris(μ2‐3‐methyl‐5‐phenylpyrazolato‐N,N′)‐tri‐gold(I) ( 3 ) and tris(μ2‐3,5‐diphenylpyrazolato‐N,N′)‐tri‐gold(I) ( 4 ) has been carried out using variable temperature and high pressure X‐ray crystallography, solid‐state emission spectroscopy, Raman spectroscopy and computational techniques. Single‐crystal X‐ray studies show that there is a significant reduction in the intertrimer Au???Au distances both with decreasing temperature and increasing pressure. In the four complexes, the reduction in temperature from 293 to 100 K is accompanied by a reduction in the shortest intermolecular Au???Au contacts of between 0.04 and 0.08 Å. The solid‐state luminescent emission spectra of 1 and 2 display a red shift with decreasing temperature or increasing pressure. Compound 3 does not emit under ambient conditions but displays increasingly red‐shifted luminescence upon cooling or compression. Compound 4 remains emissionless, consistent with the absence of intermolecular Au???Au interactions. The largest pressure induced shift in emission is observed in 2 with a red shift of approximately 630 cm?1 per GPa between ambient and 3.80 GPa. The shifts in all the complexes can be correlated with changes in Au???Au distance observed by diffraction.  相似文献   

14.
Remarkable magneto‐optical properties of a new isolator material, that is, europium sulfide nanocrystals with gold (EuS–Au nanosystem), has been demonstrated for a future photo‐information technology. Attachment of gold particles that exhibit surface plasmon resonance leads to amplification of the magneto‐optical properties of the EuS nanocrystals. To construct the EuS–Au nanosystems, cubic EuS and spherical Au nanocrystals have been joined by a variety of organic linkers, that is, 1,2‐ethanedithiol (EDT), 1,6‐hexanedithiol (HDT), 1,10‐decanedithiol (DDT), 1,4‐bisethanethionaphthalene (NpEDT), or 1,4‐bisdecanethionaphthalene (NpDDT) . Formation of these systems was observed by XRD, TEM, and absorption spectra measurements. The magneto‐optical properties of the EuS–Au nanosystem have been characterized by using Faraday rotation spectroscopy. The Faraday rotation angle of the EuS–Au nanosystem is dependent on the Au particle size and interparticle distance between EuS and Au nanocrystals. Enhancement of the Faraday rotation of EuS–Au nanosystems was observed. The spin configuration in the excited state of the EuS–Au nanosystem was also investigated using photo‐assisted electron paramagnetic resonance.  相似文献   

15.
Surface‐assisted laser desorption/ionization mass spectrometry (SALDI‐MS) is applied to provide strong evidence for the chemical reactions of functionalized gold nanoparticles (Au NPs) with analytes – Hg2+ ions induced MPA?Au NPs aggregation in the presence of 2,6‐pyridinedicarboxylic acid (PDCA) and H2O2 induced fluorescence quenching of 11‐MUA?Au NDs. PDCA‐Hg2+‐MPA coordination is responsible for Au NPs aggregation, while the formation of 11‐MUA disulfide compounds that release into the bulk solution is responsible for H2O2‐induced fluorescence quenching. In addition to providing information about the chemical structures, SALDI‐MS is also selective and sensitive for the detection of Hg2+ ions and H2O2. The limits of detection (LODs) for Hg2+ ions and H2O2 by SALDI‐MS were 300 nM and 250 µM, respectively. The spot‐to‐spot variations in the two studies were both less than 18% (50 sample spots). Our results reveal that SALDI‐MS can be used to study analyte‐induced changes in the surface properties of nanoparticles. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Most recently, gold nanoparticles due to anticancer properties have been considered in medical science. So the aim of the study was green synthesis of gold nanoparticles using Ocimum basilicum extract and its anticancer activity. The prepared Au nanoparticles were characterized by advanced physicochemical techniques like Fourier Transformed Infrared spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray spectroscopy (EDX), X-ray Diffraction (XRD) and UV–vis spectroscopy study. It has been established that Au nanoparticles have a spherical shape with a mean diameter from 19 to 44 nm. In the cellular and molecular part of the recent study, the treated cells with Au nanoparticles were assessed by MTT assay for 48 h about the cytotoxicity and anti-human laryngeal cancer properties on normal (HUVEC) and cancer (HEp-2, TU212, KB, UM-SCC-5, UM-SCC-11A and UM-SCC-11B) cell lines. In the antioxidant test, the IC50 of Au nanoparticles and BHT against DPPH free radicals were 228 and 208 µg/mL, respectively. The IC50 of Au nanoparticles were 174, 231, 179, 143, 230, and 216 µg/mL against HEp-2, TU212, KB, UM-SCC-5, UM-SCC-11A and UM-SCC-11B cell lines, respectively. The viability of malignant cell lines reduced dose-dependently in the presence of Au nanoparticles. It appears that the anti-cancer effect of Au nanoparticles e to their antioxidant effects.  相似文献   

17.
In the context of gaining understanding on the origin of the visible‐light photoresponse of TiO2 containing gold nanoparticles, the photocurrent spectra and photocatalytic H2 evolution of titania (P25) and Au–P25 were compared. Whereas no photocurrent was detected upon visible‐light irradiation for either of the two photocatalysts, Au–P25 exhibited photocatalytic H2 evolution for wavelengths between 400 and 575 nm. This contradictory behavior under visible‐light irradiation of Au–P25 was rationalized by transient absorption spectroscopy. It was suggested that photocatalytic H2 generation results from methanol quenching of the charge‐separation state in each semiconductor nanoparticle, but the lack of photocurrent is due to the short lifetime of the charge separation, which makes interparticle charge migration for micrometric distances unlikely.  相似文献   

18.
The preparation of three isonitrile complexes (CyNC)Au(I)Cl, (CyNC)Au(I)Br, and (CyNC)Au(I)I, along with their structural and spectral characterization, are reported. X-ray crystal structures reveal that these crystallize in the same space group and have closely related structures. The structures involve pleated chains of linear, two-coordinate monomers that are arranged in a head-tail fashion. However, these chains vary significantly in the degree of aurophilic interactions among the individual molecules. Thus, (CyNC)Au(I)Cl forms infinite chains with alternating Au...Au distances of 3.3894(7) and 3.5816(7) A. Within the chains of (CyNC)Au(I)Br, however, the alternation of Au.Au distances is more pronounced so that there are dimers, with an Au.Au distance of 3.4864(9) A, and neighboring gold centers at 3.7036(9) A. In (CyNC)Au(I)I, the gold-gold contacts do not lie within the range of significant aurophilic bonding. The closest Au...Au distance is 3.7182(11) A while every other Au...Au distance is 3.9304(12) A. The steric factor of the X ligand and dipole-dipole interactions between the antiparallel complexes is much more significant than aurophilic interactions in governing the self-association of the complexes in this series. The colorless crystals of each solid display an orange luminescence band with a strikingly large Stokes' shift ( approximately 21000 cm(-)(1), 2.6 eV). However, considerable care had to be taken to ensure that the crystals used for the study of the luminescence were free of a surface impurity that produced a turquoise-green luminescence in (CyNC)Au(I)Cl. The diffuse reflectance spectra for the solids show a similar three-band pattern in the 200-330 nm range.  相似文献   

19.
Crystals of mixed‐valent Au complexes have been grown from solutions of cyclohexanecarbonitrile and a stoichiometric amount of gold(I) and gold(III) chloride. The purely obtained compound was characterized as bis(cyclohexanecarbonitrile)gold(I) tetrachloridoaurate(III). The crystal packing of the mixed valent Au(I/III) compound demonstrates a columnar arrangement of the gold(I) and gold(III) atoms. The new structure displays the shortest unsupported gold(I)–gold(III) interactions with the sub‐van der Waals distance of 324–325 pm, which is assumed as an aurophilic bonding interaction.  相似文献   

20.
在分子尺度上介绍了Au/TiO2(110)模型催化剂表面和单晶Au表面CO氧化反应机理和活性位、以及H2O的作用.在低温(<320 K), H2O起着促进CO氧化的作用, CO氧化的活性位位于金纳米颗粒与TiO2载体界面(Auδ+–Oδ––Ti)的周边. O2和H2O在金纳米颗粒与TiO2载体界面边缘处反应形成OOH,而形成的OOH使O–O键活化,随后OOH与CO反应生成CO2.300 K时CO2的形成速率受限于O2压力与该反应机理相印证.相反,在高温(>320 K)下,因暴露于CO中而导致催化剂表面重组,在表面形成低配位金原子.低配位的金原子吸附O2,随后O2解离,并在金属金表面氧化CO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号