首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
“Co”axing selectivity into isomerization : Treatment of 1‐alkenes with dimethylphenylsilylmethylmagnesium chloride in the presence of a cobalt‐NHC complex in dioxane at 50 °C or higher provides the corresponding (E)‐2‐alkenes selectively. The isomerization is applicable to the stereoselective synthesis of (E)‐crotylsilanes and (E)‐1‐propenylsilanes from the corresponding homoallylsilanes and allylsilanes, respectively.

  相似文献   


2.
3.
The reactions of 1‐sulfonyl‐1H‐indazoles under basic conditions are discussed, and the direct N‐alkylation and Kemp elimination reactions of these compounds are reported. A series of 2‐(p‐tosylamino)benzonitriles and N‐alkyl indazoles were prepared in good yields. Moreover, the 2‐(p‐tosylamino)benzonitriles could be transformed into a diverse range of important derivatives in a one‐pot reaction. This method was successfully applied to the total syntheses of quindolinone and cryptolepinone; quindolinone was prepared in a one‐pot reaction from 1‐sulfonyl‐1H‐indazole.  相似文献   

4.
The same regioselectivity can be obtained in the CuI catalyzed allylic coupling of n‐butylzinc reagents prepared by either pre‐transmetallation or in situ transmetallation of Grignard reagents in the presence of allylic partner and catalyst. n‐Butylzinc bromide and di‐n‐butylzinc undergo γ‐selective allylation whereas tri‐n‐butylzincate gives preferential α‐selectivity. The regioselectivity obtained in the reaction of n‐butyl bromide and E‐crotyl chloride in the presence of Mg and CuCN is parallel to the coupling of preformed n‐butylmagnesium bromide. It is remarkable that the regiochemical outcome of copper catalyzed alkyl‐allyl coupling can be controlled by using Grignard reagents prepared under Barbier conditions and alkylzincs prepared by in situ transmetallation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
1,3‐Dehydro‐o‐carborane is a useful synthon for selective cage boron functionalization of o‐carboranes. It reacts readily with alkenes or alkynes to give a variety of cage B(3)‐alkenyl/allenyl o‐carboranes by ene reactions in very high yields and excellent regioselectivity. This can be ascribed to the highly polarized cage C?B multiple bond, which lowers the activation barriers of the ene reaction.  相似文献   

6.
7.
A photoinduced SET process enables the direct B?H bond activation of NHC–boranes. In contrast to common hydrogen atom transfer (HAT) strategies, this photoinduced reaction simply takes advantage of the beneficial redox potentials of NHC–boranes, thus obviating the need for extra radical initiators. The resulting NHC–boryl radical was used for the borylation of a wide range of α‐trifluoromethylalkenes and alkenes with diverse electronic and structural features, providing facile access to highly functionalized borylated molecules. Labeling and photoquenching experiments provide insight into the mechanism of this photoinduced SET pathway.  相似文献   

8.
A novel type of highly efficient chiral sulfinamide bisphosphine catalysts (Wei‐Phos) were developed. These could be easily prepared from commercially available starting materials. Wei‐Phos has shown good performance in the very challenging intermolecular cross‐Rauhut–Currier reactions of vinyl ketones and 3‐acyl acrylates or 2‐ene‐1,4‐diones, leading to the R‐C products in high yields with up to 99 % ee under 2.5–5 mol% catalyst loading. The highly regio‐ and enantio‐selective cross‐Rauhut–Currier reactions of 2‐ene‐1,4‐diones and vinyl ketone have yet reported so far.  相似文献   

9.
A new transfer hydrofunctionalization strategy to turnover H‐MII‐X complexes has enabled both intra‐ and intermolecular Mizoroki–Heck (MH)‐type reactions of aryl cyanides that are challenging to realize under traditional, basic conditions. Initially, a cascade carbonickelation/MH reaction of 2‐cyanostyrenes was achieved using a key alkyne transfer hydrocyanation step. Mechanistic experiments supported the proposed catalytic cycle, including the turnover‐enabling transfer hydrocyanation step. The reactivity was then extended to the intermolecular MH reaction of benzonitriles and styrenes.  相似文献   

10.
11.
Ethyl-2-(2-cyano-2-ethylthio)-ethyl-propenoate (ECEP) was synthesized and examined as free-radical addition–fragmentation chain transfer agent (AFCTA) in the bulk polymerization of methyl methacrylate (MMA) and styrene at various temperatures. A better chain transfer constant (Ctr) was observed for styrene than for MMA, projecting the potentiality of the compound as a better end-functionalizing agent for the former. In both cases, copolymerization of ECEP with the monomer predominated over fragmentation, the relative proportions of which were dependent on the monomer. The ECEP-terminated radical fragmented to an extent of 26% in the presence of MMA, whereas it was only 9.5% in the case of styrene. The relative extent of fragmentation and copolymerization was in conformation to the calculated reactivity ratios and chain transfer constants. Addition–fragmentation chain transfer resulted in the formation of methacrylic-functional macromonomers. The copolymerizability of the resultant macromonomer was found to depend on the nature of the backbone and on the comonomer. On copolymerizing with MMA, the terminal monomer moiety on polystyrene (PS)-based macromonomers preferred to undergo fragmentation, whereas that of the polymethyl methacrylate (PMMA)-based one copolymerized readily with styrene because of thermodynamic and kinetic factors. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2511–2524, 1999  相似文献   

12.
The chemical modification of proteins is a valuable technique in understanding the functions, interactions, and dynamics of proteins. Reactivity and selectivity are key issues in current chemical modification of proteins. The Michael addition‐like thiol–ene reaction is a useful tool that can be used to tag proteins with high selectivity for the solvent‐exposed thiol groups of proteins. To obtain insight into the bioconjugation of proteins with this method, a kinetic analysis was performed. New vinyl‐substituted pyridine derivatives were designed and synthesized. The reactivity of these vinyl tags with L ‐cysteine was evaluated by UV absorption and high‐resolution NMR spectroscopy. The results show that protonation of pyridine plays a key role in the overall reaction rates. The kinetic parameters were assessed in protein modification. The different reactivities of these vinyl tags with solvent‐exposed cysteine is valuable information in the selective labeling of proteins with multiple functional groups.  相似文献   

13.
14.
Cycloaddition reactions are highly attractive for post‐synthetic modification of metal–organic frameworks (MOFs). We report herein on cycloaddition reactions with PIZOF(R1,R2)s, which are porous interpenetrated Zr‐based MOFs with Zr6O4(OH)4(CO2)12 as the nodes and the dicarboxylates ?O2C[PE‐P(R1,R2)‐EP]CO2? (P: phenylene, E: ethynylene; R1, R2: side chains at the central phenylene unit) as the linkers. 1,3‐Dipolar cycloaddition between the pendant ethyne moieties of PIZOF(OMe,OCH2C?CH) and 4‐methylbenzyl azide resulted in 98 % conversion of the ethyne groups. Reactions of PIZOF(OMe,O(CH2)3furan) with maleimide, N‐methylmaleimide, and N‐phenylmaleimide converted 98, 99, and 89 % of the furan moieties into the Diels–Alder adducts. However, no reaction occurred with maleic anhydride. High‐resolution 1H NMR spectra were crucial in determining the conversion and identifying the reaction products. Of all the reagents (NaOD/D2O, D2SO4, Bu4NF, CsF, CsF/DCl, and KHF2) tested for the disassembly of the PIZOFs in [D6]DMSO, the combination of CsF and DCl was found to be the best. The disassembly at room temperature was fast (5–15 min), and after the addition of K2CO3 the 1H NMR data were identical to those of the diacids (=protonated linkers) dissolved in pure DMSO. This allowed for simple structure elucidation through data comparison. CsF/DCl dissolves not only PIZOFs but also the hydrolytically very stable UiO‐66.  相似文献   

15.
Herein a comprehensive study is provided on the asymmetric conjugate addition (ACA) of Grignard reagents to α‐substituted cyclic enones. After the elucidation of the optimal experimental conditions, the scope of Grignard reagents and Michael acceptors was examined. Whereas secondary Grignards gave better enantioselectivities with 2‐cyclopentenones, both linear and branched Grignard reagents were tolerated for the ACA to 2‐methylcyclohexenone. The sequential ACA–enolate trapping, which leads to quaternary stereocenters, was then studied. Thus, many electrophiles have been tested, thereby giving rise to highly functionalized cyclic ketones with contiguous α‐quaternary and β‐tertiary centers. The present technique is believed to bring a new approach to versatile terpenoid‐like skeletons of bioactive natural products. Straightforward derivatizations of enantioenriched saturated cyclic ketones further support the potential of the present methodology in synthesis.  相似文献   

16.
A detailed investigation of addition–fragmentation chain transfer (AFCT) in the free‐radical polymerization of methyl methacrylate (MMA) in the presence of methyl α‐(bromomethyl)acrylate (MBMA) was carried out to elucidate mechanistic details with efficient macromonomer synthesis as an underlying goal. Advanced modeling techniques were used in connection with the experimental work. Curve fitting of simulated and experimental molecular weight distributions with respect to the rate coefficient for addition of propagating radicals to MBMA (kadd) over 60–120 °C resulted in Eadd = 21.7 kJ mol?1 and Aadd = 2.18 × 106 M?1 s?1 and a very weak temperature dependence of the chain‐transfer constant (EaddEp). The rate coefficient for fragmentation of adduct radicals at 60 °C was estimated as kf ≈ 39 s?1 on the basis of experimental data of the MMA conversion and the concentration of 2‐carbomethoxy‐2‐propenyl end groups. The approach developed is generic and can be applied to any AFCT system in which copolymerization does not occur and in which the resulting unsaturated end groups do not undergo further reactions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2640–2650, 2004  相似文献   

17.
18.
Various arylboronic acids reacted with activated alkenes in the presence of [Ni(dppe)Br2], ZnCl2, and H2O in CH3CN at 80 °C to give the corresponding Mizoroki–Heck‐type addition products in good to excellent yields. Furthermore, 1 equivalent of the hydrogenation product of the activated alkene was also produced. By tuning the ligands of the nickel complexes and the reaction conditions, Michael‐type addition was achieved in a very selective manner. Thus, various p‐ and o‐substituted arylboronic acids or alkenylboronic acid reacted smoothly with activated alkenes in CH3CN at 80 °C for 12 h catalyzed by Ni(acac)2, P(o‐anisyl)3, and K2CO3 to give the corresponding Michael‐type addition products in excellent yields. However, for m‐substituted arylboronic acids, the yields of Michael‐type addition products are very low. The cause of this unusual meta‐substitution effect is not clear. By altering the solvent or phosphine ligand, the product yields for m‐substituted arylboronic acids were greatly improved. In contrast to previous results in the literature, the present catalytic reactions required water for Mizoroki–Heck‐type products and dry reaction conditions for Michael‐type addition products. Possible mechanistic pathways for both addition reactions are proposed.  相似文献   

19.
Superhydrophobic/superoleophilic composites HFGO@ZIF‐8 have been prepared from highly fluorinated graphene oxide (HFGO) and the nanocrystalline zeolite imidazole framework ZIF‐8. The structure‐directing and coordination‐modulating properties of HFGO allow for the selective nucleation of ZIF‐8 nanoparticles at the graphene surface oxygen functionalities. This results in localized nucleation and size‐controlled ZIF‐8 nanocrystals intercalated in between HFGO layers. The composite microstructure features fluoride groups bonded at the graphene. Self‐assembly of a unique micro‐mesoporous architecture is achieved, where the micropores originate from ZIF‐8 nanocrystals, while the functionalized mesopores arise from randomly organized HFGO layers separated by ZIF‐8 nanopillars. The hybrid material displays an exceptional high water contact angle of 162° and low oil contact angle of 0° and thus reveals very high sorption selectivity, fast kinetics, and good absorbencies for nonpolar/polar organic solvents and oils from water. Accordingly, Sponge@HFGO@ZIF‐8 composites are successfully utilized for oil–water separation.  相似文献   

20.
An efficient method for C7‐position‐selective alkenylation of N‐substituted indolines with alkenes is reported. Various 7‐alkenylindolines were obtained in moderate to excellent yields in air in the presence of catalytic amounts of [Cp*IrCl2]2, AgOTf, and Cu(OAc)2. The protocol relies on the use of a carbonyl or carbamoyl group on the nitrogen atom of indoline as a directing group and is potentially applicable to the synthesis of 7‐alkenylindoles and 7‐alkylindoles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号