首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A lanthanide‐complex‐based ratiometric luminescence probe specific for peroxynitrite (ONOO?), 4′‐(2,4‐dimethoxyphenyl)‐2,2′:6′,2′′‐terpyridine‐6,6′′‐diyl]bis(methylenenitrilo)tetrakis(acetate)‐Eu3+/Tb3+ ([Eu3+/Tb3+(DTTA)]), has been designed and synthesized. Both [Eu3+(DTTA)] and [Tb3+(DTTA)] are highly water soluble with large stability constants at ≈1020, and strongly luminescent with luminescence quantum yields of 10.0 and 9.9 %, respectively, and long luminescence lifetimes of 1.38 and 0.26 ms, respectively. It was found that the luminescence of [Tb3+(DTTA)] could be quenched by ONOO? rapidly and specifically in aqueous buffers, while that of [Eu3+(DTTA)] did not respond to the addition of ONOO?. Thus, by simply mixing [Eu3+(DTTA)] and [Tb3+(DTTA)] in an aqueous buffer, a ratiometric luminescence probe specific for time‐gated luminescence detection of ONOO? was obtained. The performance of [Tb3+(DTTA)] and [Eu3+/Tb3+(DTTA)] as the probes for luminescence imaging detection of ONOO? in living cells was investigated. The results demonstrated the efficacy and advantages of the new ratiometric luminescence probe for highly sensitive luminescence bioimaging application.  相似文献   

2.
Four new three‐dimensional isostructural lanthanide–cadmium metal–organic frameworks (Ln–Cd MOFs), [LnCd2(imdc)2(Ac)(H2O)2]?H2O (Ln=Pr ( 1 ), Eu ( 2 ), Gd ( 3 ), and Tb ( 4 ); H3imdc=4,5‐imidazoledicarboxylic acid; Ac=acetate), have been synthesized under hydrothermal conditions and characterized by IR, elemental analyses, inductively coupled plasma (ICP) analysis, and X‐ray diffraction. Single‐crystal X‐ray diffraction shows that two LnIII ions are surrounded by four CdII ions to form a heteronuclear building block. The blocks are further linked to form 3D Ln–Cd MOFs by the bridging imdc3? ligand. Furthermore, the left‐ and right‐handed helices array alternatively in the lattice. Eu–Cd and Tb–Cd MOFs can emit characteristic red light with the EuIII ion and green light with the TbIII ion, respectively, while both Gd–Cd and Pr–Cd MOFs generate blue emission when they are excited. Different concentrations of Eu3+ and Tb3+ ions were co‐doped into Gd–Cd/Pr–Cd MOFs, and tunable luminescence from yellow to white was achieved. White‐light emission was obtained successfully by adjusting the excitation wavelength or the co‐doping ratio of the co‐doped Gd–Cd and Pr–Cd MOFs. These results show that the relative emission intensity of white light for Gd–Cd:Eu3+,Tb3+ MOFs is stronger than that of Pr–Cd:Eu3+,Tb3+ MOFs, which implies that the Gd complex is a better matrix than the Pr complex to obtain white‐light emission materials.  相似文献   

3.
Fluorescence intensities of poly(2‐vinylpyridine) (P2VP) and poly(4‐vinylpyridine) (P4VP) in H2SO4/H2O solutions were increased with increasing acid concentration. The intensities for P2VP were found to be six times stronger than that of P4VP. These differences were accounted for by the microenvironment of protonated pyridinium group. The ion binding properties of 4‐methylpyridine (4MP), P2VP, and P4VP were investigated in methanol using Tb3+ as a fluorescence probe. The increase of fluorescence intensity of Tb3+ in [P2VP–Tb3+] and [P4VP–Tb3+] complexes is due to both the replacement of the inner coordinated methanol molecules and ligand‐to‐metal energy transfer. The model compound 4MP was inefficient from this point of view, and the results were attributed to the polymer cooperative effect. Reduced viscosities of poly(vinylpyridine)s (PVP) in methanol were similar to nonionic polymers; however, when TbCl3 was added into the solution, the viscosities increased upon dilution. These results also indicated that PVP form complexes with Tb3+ in methanol. When diluted, the counterions Cl are allowed to dissociate and the charged polymer expands. Consequently, the solution's viscosity increases. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1341–1345, 1999  相似文献   

4.
An imidazole‐terminated hyperbranched polymer with octafunctional POSS branching units denoted as POSS‐HYPAM‐Im was prepared by the polymerization of excess amounts of tris(2‐aminoethyl)amine with the first‐generation methyl ester‐terminated POSS‐core poly(amidoamine)‐typed dendrimer, reacting with methyl acrylate, and ester‐amide exchange reaction with 3‐aminopropylimidazole. The imidazole‐terminated hyperbranched poly(amidoamine) denoted as HYPAM‐Im was also synthesized with 1‐(3‐aminopropyl)imidazole from a methyl ester‐terminated hyperbranched poly(amidoamine) by the ester‐amide exchange reaction. The transmittance of the POSS‐HYPAM‐Im solution drastically decreased when the solution pH was greater than 8.2. On the other hand, the transmittance of the HYPAM‐Im solution gradually decreased when the solution pH at 8.5 and was greater than 9. Spectrophotometric titrations of the hyperbranched polymer aqueous solutions with Cu2+ ions indicated the variation of the coordination modes of POSS‐HYPAM‐Im from the Cu2+–N4 complex to the Cu2+–N2O2 complex and the existence of the only one complexation mode of Cu2+–N4 between Cu2+ ion and HYPAM‐Im with increasing the concentrations. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2695–2701  相似文献   

5.
Despite the strong technological importance of lanthanide complexes, their formation processes are rarely investigated. This work is dedicated to determining the influence of synthesis parameters on the formation of [Ce(bipy)2(NO3)3] as well as Ce3+‐ and Tb3+‐substituted [La(bipy)2(NO3)3] (bipy = 2,2′‐bipyridine) complexes. To this end, we performed in situ luminescence measurements, synchrotron‐based X‐ray diffraction (XRD) analysis, infrared spectroscopy (IR), and measured pH value and/or ion conductivity during their synthesis process under real reaction conditions. For the [Ce(bipy)2(NO3)3] complex, the in situ luminescence measurements initially presented a broad emission band at 490 nm, assigned to the 5d→4f Ce3+ ions within the ethanolic solvation shell. Upon the addition of bipy, a red shift to 700 nm was observed. This shift was attributed to the changes in the environment of the Ce3+ ions, indicating their desolvation and incorporation into the [Ce(bipy)2(NO3)3] complex. The induction time was reduced from 8 to 3.5 min, by increasing the reactant concentration by threefold. In contrast, [La(bipy)2(NO3)3] crystallized within days instead of minutes, unless influenced by high Ce3+ and Tb3+ concentrations. Monitoring and controlling the influence of the reaction parameters on the structure of emissive complexes is important for the development of rational synthesis approaches and optimization of their structure‐related properties like luminescence.  相似文献   

6.
Terbium complexes with polymer ligands of poly(2- and 4-vinylpyridine N-oxide)s (P2VPNO, P4VPNO) in aqueous solution were prepared and characterized. Multi-exponential decays of the 5D47F5 terbium transition at 545 nm of [P2VPNO-Tb3+] and [P4VPNO-Tb3+] complexes were measured. The non-linearity of semi-logarithmic plots of time-resolved luminescence was more pronounced in [P4VPNO-Tb3+] than in [P2VPNO-Tb3+], being reduced by addition of salts such as sodium formate or acetate. We assume that multi-exponential decays of Tb3+ in the complexes are caused by a back metal-to-ligand energy transfer via triplet state of N-oxide polymer ligand. By carrying out separate experiments in water and deuterium oxide, the number of coordinated water molecules in the [P4VPNO-Tb3+] complex was estimated as 4-5, assuming that the Tb3+ aqua complex contains nine water molecules.  相似文献   

7.
A rare example of an organometallic terbium single‐ion magnet is reported. A Tb3+–[1]ferrocenophane complex displays a larger barrier to magnetization reversal than its isostructural Dy3+ analogue, which is reminiscent of trends observed for lanthanide–bis‐phthalocyanine complexes. Detailed ab initio calculations support the experimental observations and suggest a significantly larger ground‐state stabilization for the non‐Kramers ion Tb3+ in the Tb complex than for the Kramers‐ion Dy3+ in the Dy complex.  相似文献   

8.
《化学:亚洲杂志》2017,12(7):768-774
Bridged polysilsesquioxanes (BPs) show great potential in the development of lanthanide‐based luminescent materials, owing to their capacity to loading lanthanide complexes with high concentration and their flexible processability. A novel BP precursor, consisting of a C 3‐symmetrical benzene central core moiety, capable of sensitizing the luminescence of Eu3+ and Tb3+ is reported. Tunable, full‐color luminescent gels were facilely prepared by mixing the as‐synthesized precursor and Ln3+ ions in appropriate solvents. By either changing the Eu3+/Tb3+ molar ratio or altering the excitation wavelength, the emission colors of the final gels can be finely tuned. Additionally, the yellow‐colored emissive gel with a molar ratio of Eu3+ to Tb3+ of 0.5 can be used as an effective ratiometric luminescent sensor for distinguishing amines with lower pK a (<5) from those with higher pK a (>9).  相似文献   

9.
The complex formation of d‐metal ions at the interface of TbIII‐doped silica nanoparticles modified by amino groups is introduced as a route to sensing d‐metal ions and some organic molecules. Diverse modes of surface modification (covalent and noncovalent) are used to fix amino groups onto the silica surface. The interfacial binding of d‐metal ions and complexes is the reason for the TbIII‐centered luminescence quenching. The regularities and mechanisms of quenching are estimated for the series of d‐metal ions and their complexes with chelating ligands. The obtained results reveal the interfacial binding of CuII ions as the basis of their quantitative determination in the concentration range 0.1–2.5 μM by means of steady‐state and time‐resolved fluorescence measurements. The variation of chelating ligands results in a significant effect on the quenching regularities due to diverse binding modes (inner or outer sphere) between amino groups at the interface of nanoparticles and FeIII ions. The applicability of the steady‐state and time‐resolved fluorescence measurements to sense both FeIII ions and catechols in aqueous solution by means of TbIII‐doped silica nanoparticles is also introduced.  相似文献   

10.
Phenanthroline‐based hexadentate ligands L1 and L2 bearing two achiral semicarbazone or two chiral imine moieties as well as the respective mononuclear complexes incorporating various lanthanide ions, such as LaIII, EuIII, TbIII, LuIII, and YIII metal ions, were synthesized, and the crystal structures of [ML1Cl3] (M=LaIII, EuIII, TbIII, LuIII, or YIII) complexes were determined. Solvent or water molecules act as coligands for the rare‐earth metals in addition to halide anions. The big LnIII ion exhibits a coordination number (CN) of 10, whereas the corresponding EuIII, TbIII, LuIII, and YIII centers with smaller ionic radii show CN=9. Complexes of L2, namely [ML2Cl3] (M=EuIII, TbIII, LuIII, or YIII) ions could also be prepared. Only the complex of EuIII showed red luminescence, whereas all the others were nonluminescent. The emission properties of the Eu derivative can be applied as a photophysical signal for sensing various anions. The addition of phosphate anions leads to a unique change in the luminescence behavior. As a case study, the quenching behavior of adenosine‐5′‐triphosphate (ATP) was investigated at physiological pH value in an aqueous solvent. A specificity of the sensor for ATP relative to adenosine‐5′‐diphosphate (ADP) and adenosine‐5′‐monophosphate (AMP) was found. 31P NMR spectroscopic studies revealed the formation of a [EuL2(ATP)] coordination species.  相似文献   

11.
Six f‐block salts from the lanthanide series form complexes with poly(vinyl amine) and increase the glass‐transition temperature of the polymer. Results for poly(vinylamine) complexes with EuCl3(H2O)6 and TbCl3(H2O)6 surpass those for d7 cobalt complexes that were studied previously. The glass‐transition temperature increases by 49 °C per mol % Eu3+ and 50 °C per mol % Tb3+, up to 2 mol % of the f‐block cations. At 5 mol % Eu3+, Tg is slightly higher than 250 °C with no visual evidence of thermal degradation of either component in the complex. This corresponds to a Tg enhancement of almost 200 °C with respect to the undiluted polymer. The increases in Tg for these lanthanide complexes with poly(vinylamine) obey the following trend: up to 2 mol % of the f‐block cation. With the exception of Gd(CH3COO)3, which contains different anionic ligands than all of the other trichlorides, this trend correlates inversely with the highest dehydration/dehydrochlorination temperature of each undiluted lanthanide salt, as measured via calorimetry above the melting point and verified by thermogravimetry. Waters of hydration and amino sidegroups undergo ligand substitution in the coordination sphere of the lanthanides. Since lanthanide cations are classified as hard acids, it is not unreasonable that they form complexes with the nitrogen lone pair in the amino sidegroup of the polymer, which is classified as a hard base. Micro‐clustering of several amino side groups reduces chain mobility significantly in the vicinity of each metal center, produces coordination crosslinks, and increases Tg. Complementary solution studies reveal that hydrogels form with swelling ratios between 20 and 50 at Eu3+ mole fractions between 0.01 and 0.05 with respect to poly(vinylamine). Infrared spectroscopic observations suggest that the amino nitrogen lone pair in poly(vinylamine) interacts with these lanthanide metal centers. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1931–1938, 2000  相似文献   

12.
We describe herein the synthesis and photophysical characterization of new lanthanide complexes that consist of a (9,9‐dimethylfluoren‐2‐yl)‐2‐oxoethyl or a (9,9′‐spirobifluoren‐2‐yl)‐2‐oxoethyl unit as the antenna, covalently linked to a 1,4,7,10‐tetraazacyclododecane‐1,4,7‐triacetic acid (DO3A) unit as the Ln3+ (Gd3+, Eu3+, Sm3+, Tb3+, Dy3+) coordination site. We were able to translate the spectroscopic properties of the innovative bipartite ligands into the formation of highly luminescent europium complexes that exhibit efficient emission (?se>0.1) upon sensitization in the near‐visible region, that is, with an excitation wavelength above 350 nm. The luminescence of the Eu3+complexes is clearly detectable at concentrations as low as 10 pM . Furthermore, the structural organization of these bipartite ligands makes the complexes highly soluble in aqueous solutions and chemically stable over time.  相似文献   

13.
A novel water‐soluble poly(para‐phenylene) derivative with pendant thymine and sulfonate units (PBTS) has been prepared and its metal ion sensing properties have been investigated. PBTS exhibited a reversible and selective fluorescence quenching behavior toward Hg2+ ions as compared to Ag+, Ni2+, Mg2+, Ca2+, Hg2+, Co2+, Cd2+, Cu2+, Pb2+, Ba2+, Fe3+, and Zn2+ ions in aqueous solution. The fluorescence quenching resulted from the interpolymeric π‐stacking aggregation which was induced by the specific thymine–Hg–thymine interaction.

  相似文献   


14.
In this work, the asymmetrical analog of 3,4‐ethylenedioxythiophene (EDOT), thieno[3,4‐b]‐1,4‐oxathiane (EOTT), was synthesized and chemically polymerized first in aqueous solution using poly(styrene sulfonic sodium) (PSS) as the polyelectrolyte to yield poly(thieno[3,4‐b]‐1,4‐oxathiane) (PEOTT)/PSS. As‐formed film exhibited low electrical conductivity (~10?4 S/cm). Alternatively, EOTT together with EDOT (in different molar ratio of 1:1 and 1:5) was copolymerized and the polymer poly(EOTT‐co‐EDOT)/PSS had electrical conductivity of 10?1 S/cm. After dimethyl sulfoxide (DMSO) treatment, the electrical conductivity was enhanced to 100 S/cm; however, the conductivity of the above homopolymer was reduced (~10?5 S/cm). Raman spectroscopy was used to interpret conductivity enhancement or reduction after DMSO treatment. The conductivity decrease of PEOTT/PSS compared to poly(EOTT‐co‐EDOT)/PSS may arise from the conformational change of PEOTT backbone from the quasi‐planar to the distorted planar mode induced by PSS/PSSH through ionic interaction. Kinetic studies revealed that the copolymer had high coloration efficiencies (375 cm2/C), low switching voltages (?0.8 to +0.6 V), decent contrast ratios (45%), moderate response time (1.0 s), excellent stability, and color persistence. An electrochromic device employing poly(3‐methylthiophene) and poly(EOTT‐co‐EDOT)/PSS as the anode and cathode materials was also studied. From these results, poly(EOTT‐co‐EDOT)/PSS would be a promising candidate material for organic electronics. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2285–2297  相似文献   

15.
Two generations of lipophilic pyrenyl functionalized poly(benzyl ether) dendrimers (P1 and P2) have been synthesized. The thermal properties of the two functionalized dendrimers have been investigated, and the pyrenyl group of the dendritic molecules encapsulated in the arene–ruthenium metalla‐cage, [Ru6(p‐cymene)6(tpt)2(donq)3]6+ ([ 1 ]6+) (tpt=2,4,6‐tri(pyridin‐4‐yl)‐1,3,5‐triazine; donq=5,8‐dioxydo‐1,4‐naphthoquinonato). The host–guest properties of [P1⊂ 1 ]6+ and [P2⊂ 1 ]6+ were studied in solution by NMR and UV/Vis spectroscopic methods, thus allowing the determination of the affinity constants. Moreover, the cytotoxicity of these water‐soluble host–guest systems was evaluated on human ovarian cancer cells.  相似文献   

16.
Two macrobicyclic ligands derived from an 18‐membered tetralactam ring and 2,2′‐bipyridine or 2,6‐bis(pyrazol‐1‐yl)pyridine moieties, 1 and 2 , respectively, form stable complexes with GdIII, EuIII, and TbIII ions in aqueous solution. The ligand‐based luminescence is retained in the GdIII cryptates, whereas this radiative deactivation is quenched in the EuIII and TbIII cryptates by ligand‐to‐metal energy transfer, resulting in the usual metal‐centered emission spectra. Singlet‐ and triplet‐state energies, emission‐decay lifetimes, and luminescence yields were measured. [Tb⊂ 1 ]3+ cryptate shows a long luminescence lifetime (τ=1.12 ms) and a very high metal luminescence quantum yield (Φ=0.25) in comparison with those reported in the literature for Tb3+ complexes sensitized by a bipyridine chromophore. By comparison to [Ln⊂ 1 ]3+, [Ln⊂ 2 ]3+ presents markedly lower luminescence properties, due to worse interaction between the 2,6‐bis(pyrazol‐1‐yl)pyridine unit and the metal ion. Moreover, the luminescent metal and the triplet ligand energy levels of [Eu⊂ 2 ]3+ do not match. The effects of H2O molecules coordinated to the metal centre and of thermally activated decay processes on nonradiative deactivation to the ground‐state are also reported.  相似文献   

17.
Two alkylthio‐substituted poly(p‐phenylenevinylene) (AT–PPV) derivatives, poly(2‐octylthio‐p‐phenylenevinylene) (OT–PPV) and poly[5‐methoxy‐2‐(2′‐ethyl‐hexylthio)‐p‐phenylenevinylene] (MEHT–PPV), were synthesized by a Heck coupling reaction for the investigation of the effect of alkylthio groups on the optoelectronic properties of poly(p‐phenylenevinylene) derivatives. The absorption peaks of OT–PPV and MEHT–PPV solutions were located at 431 and 438 nm, respectively. As for solid films, an OT–PPV film showed an absorption maximum wavelength at 444 nm, 13 nm redshifted in comparison with its solution value, whereas an MEHT–PPV film displayed the same absorption peak position as its dilute solution; this indicated that there was no interchain interaction in the MEHT–PPV film. Polymeric light‐emitting diodes (PLEDs) and polymer solar cells (PSCs) based on OT–PPV and MEHT–PPV were fabricated and characterized. Very narrow bandwidths of the electroluminescence (EL) spectra of the two AT–PPVs were found, with the full width at half‐maximum of the emission being 40 and 47 nm for OT–PPV and MEHT–PPV, respectively. The maximum EL efficiency of the single‐layer PLED based on MEHT–PPV with Al as a cathode reached 1.49 cd/A. The PSC based on a blend of OT–PPV and [6,6]‐phenyl‐C61 butyric acid methyl ester (PCBM) showed the power conversion efficiency of 1.4% under the illumination of AM1.5 (80 mW/cm2). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1279–1290, 2006  相似文献   

18.
Nontoxic and biodegradable poly(?‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(?‐caprolactone) triblock copolymers were synthesized by the solution polymerization of ?‐caprolactone in the presence of poly(ethylene glycol). The chemical structure of the resulting triblock copolymer was characterized with 1H NMR and gel permeation chromatography. In aqueous solutions of the triblock copolymers, the micellization and sol–gel‐transition behaviors were investigated. The experimental results showed that the unimer‐to‐micelle transition did occur. In a sol–gel‐transition phase diagram obtained by the vial‐tilting method, the boundary curve shifted to the left, and the gel regions expanded with the increasing molecular weight of the poly(?‐caprolactone) block. In addition, the hydrodynamic diameters of the micelles were almost independent of the investigated temperature (25–55 °C). The atomic force microscopy results showed that spherical micelles formed at the copolymer concentration of 2.5 × 10?4 g/mL, whereas necklace‐like and worm‐like shapes were adopted when the concentration was 0.25 g/mL, which was high enough to form a gel. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 605–613, 2007  相似文献   

19.
The reaction of lanthanide(III) nitrates with 4‐(pyridin‐2‐yl)methyleneamino‐1,2,4‐triazole (L) was studied. The compounds [Ln(NO3)3(H2O)3] ? 2 L, in which Ln=Eu ( 1 ), Gd ( 2 ), Tb ( 3 ), or Dy ( 4 ), obtained in a mixture of MeCN/EtOH have the same structure, as shown by XRD. In the crystals of these compounds, the mononuclear complex units [Ln(NO3)3(H2O)3] are linked to L molecules through intermolecular hydrogen‐bonding interactions to form a 2D polymeric supramolecular architecture. An investigation into the optical characteristics of the Eu3+‐, Tb3+‐, and Dy3+‐containing compounds ( 1 , 3 , and 4 ) showed that these complexes displayed metal‐centered luminescence. According to magnetic measurements, compound 4 exhibits single‐ion magnet behavior, with ΔEeff/kB=86 K in a field of 1500 Oe.  相似文献   

20.
The association constant K of mono-acetato complex of Tb3+ has been determined at normal p and T conditions by measurement of its luminescence lifetime in aqueous solution containing increasing concentrations of acetate. Two experimental arrangements used for the measurement are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号