首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
One‐electron reduction of C2‐arylated 1,3‐imidazoli(ni)um salts (IPrAr)Br (Ar=Ph, 3 a ; 4‐DMP, 3 b ; 4‐DMP=4‐Me2NC6H4) and (SIPrAr)I (Ar=Ph, 4 a ; 4‐Tol, 4 b ) derived from classical NHCs (IPr=:C{N(2,6‐iPr2C6H3)}2CHCH, 1 ; SIPr=:C{N(2,6‐iPr2C6H3)}2CH2CH2, 2 ) gave radicals [(IPrAr)]. (Ar=Ph, 5 a ; 4‐DMP, 5 b ) and [(SIPrAr)]. (Ar=Ph, 6 a ; 4‐Tol, 6 b ). Each of 5 a , b and 6 a , b exhibited a doublet EPR signal, a characteristic of monoradical species. The first solid‐state characterization of NHC‐derived carbon‐centered radicals 6 a , b by single‐crystal X‐ray diffraction is reported. DFT calculations indicate that the unpaired electron is mainly located at the original carbene carbon atom and stabilized by partial delocalization over the adjacent aryl group.  相似文献   

2.
Ring-opening reaction of tetrahydrofuran takes place on penta(methyl)- and penta(n-butylphenyl)[60]fullerenes in the presence of chlorotrimethylsilane giving penta(organo)fullerene hydroxybutyl derivatives, C60R5(C4H8OH) (R = Me, nBuC6H4). The hydroxyl groups were further transformed into methacrylate and norbornylcarbonyloxy groups via esterification with the corresponding acid chlorides. The methacrylate derivative, penta(methyl)[60]fullerenylbutyl methacrylates was crystallographically characterized.  相似文献   

3.
Potassium reduction of iron– and ruthenium–penta(organo)[60]fullerene complexes, [M(η5‐C60R5)(η5‐Cp)] ( 1 a : M=Fe, R=Ph; 1 b : M=Fe, R=Me; 1 c : M=Ru, R=Ph; 1 d : M=Ru, R=Me; Cp=C5H5) gave mono‐ and dianions of these complexes. Treatment of the dianion 1 a with α‐bromodiphenylmethane gave three different iron–hepta(organo)[60]fullerenes, [Fe{η5‐C60Ph5(CHPh2)2}(η5‐Cp)], as a mixture of regioisomers. All three compounds were fully characterized by physical methods, including X‐ray crystallography and electrochemical measurements. One of the three compounds contains a new hoop‐shaped condensed aromatic system.  相似文献   

4.
We report herein three new modes of reactivity between arylazides N3Ar with a bulky copper(I) β-diketiminate. Addition of N3ArX3 (ArX3=2,4,6-X3C6H2; X=Cl or Me) to [iPr2NN]Cu(NCMe) results in triazenido complexes from azide attack on the β-diketiminato backbone. Reaction of [iPr2NN]Cu(NCMe) with bulkier azides N3Ar leads to terminal nitrenes [iPr2NN]Cu]=NAr that dimerize via formation of a C−C bond at the arylnitrene p-position to give the dicopper(II) diketimide 4 (Ar=2,6-iPr2C6H3) or undergo nitrile insertion to give diazametallocyclobutene 8 (Ar=4-Ph-2,6-iPr2C6H2). Importantly, reactivity studies reveal both 4 and 8 to be “masked” forms of the terminal nitrenes [iPr2NN]Cu=NAr that undergo nitrene group transfer to PMe3, tBuNC, and even into a benzylic sp3 C−H bond of ethylbenzene.  相似文献   

5.
A method for the facile synthesis of tetraaryl-trimethylsilylmethyl-hydro[60]fullerenes, C60Ar4(CH2SiMeR)H, has been developed in which readily prepared anionic mono(silylmethyl) fullerene is subjected to reaction conditions for organocopper-mediated multiple addition. Penta(organo)fullerene derivatives bearing different substituents and diverse functionality were synthesized in moderate to good yield under simple and mild reaction conditions. Further organic and organometallic transformations of these fullerenes allowed us to synthesize transition-metal complexes and a new methanofullerene derivative, 1,9-methano-6,12,15,18-tetraphenyl[60]fullerene, C60Ph4(CH2).  相似文献   

6.
A liquid‐crystalline mixed [5 : 1]hexa‐adduct of [60]fullerene was synthesized by addition of two different malonate derivatives onto C60. The hexa‐adduct derivative 2 was prepared by a stepwise synthetic procedure (fullerene→mono‐adduct of C60→hexa‐adduct of C60). Cyanobiphenyl and octyloxybiphenyl derivatives were selected as mesogens. The malonate derivatives showed either a monotropic nematic phase or a monotropic smectic A phase, and the hexa‐adduct derivative gave rise to an enantiotropic smectic A phase.  相似文献   

7.
Reactions of the open‐cage fullerene C63NO2(Py)(Ph)2 ( 1 ) with [Ru3(CO)12] produce [Ru3(CO)8(μ,η5‐C63NO2(Py)(Ph)2)] ( 2 ), [Ru2H(CO)3(μ,η7‐C63N(Py)(Ph)(C6H4))] ( 3 ), and [Ru(CO)(Py)2(η3‐C63NO2(Py)(Ph)2)] ( 4 ), in which the orifice sizes are modified from 12 to 8, 11, and 15‐membered ring, through ruthenium‐mediated C?O and C?C bond activation and formation.  相似文献   

8.
A number of m- and p-fluorophenyl compounds of type Ar2QC6H4F (Q = Sb, Bi, N and CH; Ar = C6H5, C6H4F) have been prepared. The l0F chemical shifts relative to fluorobenzene have been measured in cyclohexane, chloroform and pyridine for all these compounds. On the basis of the data obtained, the electronic nature of the Ar2Sb and Ar2Bi substituents has been studied and compared with that of the corresponding (C6H5)2N and (C6H5)2CH groups. The electronic effect of the Ar2Sb and Ar2Bi substituents has been shown to be mainly inductive, its solvent susceptibility being in most cases close to zero relative to both electron- and proton- donating solvents.  相似文献   

9.
A series of α‐diimine nickel(II) complexes containing chloro‐substituted ligands, [(Ar)N?C(C10H6)C?N(Ar)]NiBr2 ( 4a , Ar = 2,3‐C6H3Cl2; 4b , Ar = 2,4‐C6H3Cl2; 4c , Ar = 2,5‐C6H3Cl2; 4d , Ar = 2,6‐C6H3Cl2; 4e , Ar = 2,4,6‐C6H2Cl3) and [(Ar)N?C(C10H6)C?N(Ar)]2NiBr2 ( 5a , Ar = 2,3‐C6H3Cl2; 5b , Ar = 2,4‐C6H3Cl2; 5c , Ar = 2,5‐C6H3Cl2), have been synthesized and investigated as precatalysts for ethylene polymerization. In the presence of modified methylaluminoxane (MMAO) as a cocatalyst, these complexes are highly effective catalysts for the oligomerization or polymerization of ethylene under mild conditions. The catalyst activity and the properties of the products were strongly affected by the aryl‐substituents of the ligands used. Depending on the catalyst structure, it is possible to obtain the products ranging from linear α‐olefins to high‐molecular weight polyethylenes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1964–1974, 2006  相似文献   

10.
The thermal reaction of Ru3(CO)12 with ethacrynic acid, 4‐[bis(2‐chlorethyl)amino]benzenebutanoic acid (chlorambucil), or 4‐phenylbutyric acid in refluxing solvents, followed by addition of two‐electron donor ligands (L), gives the diruthenium complexes Ru2(CO)4(O2CR)2L2 ( 1 : R = CH2O‐C6H2Cl2‐COC(CH2)C2H5, L = C5H5N; 2 : R = CH2O‐C6H2Cl2‐COC(CH2)C2H5, L = PPh3; 3 : R = C3H6‐C6H4‐N(C2H4‐Cl)2, L = C5H5N; 4 : R = C3H6‐C6H4‐N(C2H4‐Cl)2, L = PPh3; 5 : R = C3H6‐C6H5, L = C5H5N; 6 : R = C3H6‐C6H5, L = PPh3). The single‐crystal structure analyses of 2 , 3 , 5 and 6 reveal a dinuclear Ru2(CO)4 sawhorse structure, the diruthenium backbone being bridged by the carboxylato ligands, while the two L ligands occupy the axial positions of the diruthenium unit.  相似文献   

11.
The structures of seven A2Cu4X10 compounds containing quasi‐planar oligomers are reported: bis(1,2,4‐trimethylpyridinium) hexa‐μ‐chlorido‐tetrachloridotetracuprate(II), (C8H12N)2[Cu4Cl10], (I), and the hexa‐μ‐bromido‐tetrabromidotetracuprate(II) salts of 1,2,4‐trimethylpyridinium, (C8H12N)2[Cu4Br10], (II), 3,4‐dimethylpyridinium, (C7H10N)2[Cu4Br10], (III), 2,3‐dimethylpyridinium, (C7H10N)2[Cu4Br10], (IV), 1‐methylpyridinium, (C6H8N)2[Cu4Br10], (V), trimethylphenylammonium, (C9H14N)2[Cu4Br10], (VI), and 2,4‐dimethylpyridinium, (C7H10N)2[Cu4Br10], (VII). The first four are isomorphous and contain stacks of tetracopper oligomers aggregated through semicoordinate Cu...X bond formation in a 4(,) stacking pattern. The 1‐methylpyridinium salt also contains oligomers stacked in a 4(,) pattern, but is isomorphous with the known chloride analog instead. The trimethylphenylammonium salt contains stacks of oligomers arranged in a 4(,) stacking pattern similar to the tetramethylphosphonium analog. These six structures feature inversion‐related organic cation pairs and hybrid oligomer/organic cation layers derived from the parent CuX2 structure. The 2,4‐dimethylpyridinium salt is isomorphous with the known (2‐amino‐4‐methylpyridinium)2Cu4Cl10 structure, in which isolated stacks of organic cations and of oligomers in a 4(,) pattern are found. In bis(3‐chloro‐1‐methylpyridinium) octa‐μ‐bromido‐tetrabromidopentacuprate(II), (C6H7ClN)[Cu5Br12], (VIII), containing the first reported fully halogenated quasi‐planar pentacopper oligomer, the oligomers stack in a 5(,) stacking pattern as the highest nuclearity [CunX2n+2]2− oligomer compound known with isolated stacking. Bis(2‐chloro‐1‐methylpyridinium) dodeca‐μ‐bromido‐tetrabromidoheptacuprate(II), (C6H7ClN)2[Cu7Br16], (IX), contains the second heptacopper oligomer reported and consists of layers of interleaved oligomer stacks with a 7[(,)][(−,−)] pattern isomorphous with that of the known 1,2‐dimethylpyridinium analog. All the oligomers reported here are inversion symmetric.  相似文献   

12.
A summary of the chemistry of the tetranuclear Au(I) amidinate complexes is presented. Tetranuclear Au(I) amidinate clusters are produced by the reaction of the sodium salt of a amidine ligand with the gold precursor Au(THT)Cl in a (1:1) stoichiometry. The structures of the tetranuclear Au4[ArNC(H)NAr]4, Ar = C6H4‐4‐OMe, C6H3‐3,5‐Cl, C6H4‐4‐Me, C6H4‐3‐CF3, C6F5, C10H7 and the tetranuclear Au4[(PhNC(Ph)NPh]4 and Au4[PhNC(CH3)NPh]4 have been characterized by X‐ray crystallography. The average Au···Au distance between adjacent Au(I) atoms is ?3.0 Å, typical of compounds having an aurophilic interaction. The four gold atoms are located at the corner of a rhomboid with the amidinate ligands bridged above and below the near plane of the four Au(I) atoms. The angles at Au···Au···Au in the cyclic units are between 70° and 116°. The tetranuclear gold(I) amidinate clusters each show different luminescence behavior. The tetranuclear clusters Au4[(ArNC(H)NAr]4, Ar = C6H4‐4‐OMe, Ar = C6H4‐3‐CF3, Ar = C6H4‐4‐Me and Ar = C6H4‐3,5‐Cl are the first tetranuclear gold(I) cluster species from group 11 elements that show fluorescence at room temperature. The tetranuclear naphthyl derivative Ar = C10H7 is luminescent only at 77 K. The pentafluorophenyl derivative Ar = C6F5 does not show any photoluminescence in the solid state nor in the solution. The lifetimes of the naphthyl and trifluoromethylphenyl complexes are in the millisecond range indicating phosphorescent processes. Electrochemical and chemical oxidation studies of the tetranuclear Au(I) amidinate clusters are presented. The tetranuclear complexes Au4[ArNC(H)NAr]4, Ar = C6H4‐4‐OMe, Ar = C6H4‐4‐Me, and Ar = C6H3‐3,5‐Cl, show three reversible waves at 0.75, 0.95, 1.09 V vs. Ag/AgCl at a scan rate of 500 mV/s in 0.1 M Bu4NPF6/CH2Cl2 at a Pt working electrode in CH2Cl2. Three reversible waves at 0.87, 1.19, 1.42 V vs. Ag/AgCl at a scan rate of 100 mV/s are also observed for the tetranuclear complex Au4[PhNC(Ph)NPh]4 in CH2Cl2. The pentafluorophenyl amidinate derivative, Au4[ArNC(H)NAr]4, Ar = C6F5 shows no oxidation wave below 1.8 V. Recently it has been shown that Au4[ArNC(H)NAr]4 is a very effective catalyst precursor for room temperature CO oxidation.  相似文献   

13.
The reaction of [Pt(CH2COMe)(Ph)(cod)] (cod=1,5‐cyclooctadiene) with (ArCH2NH2CH2‐C6H4COOH)+(PF6)? (Ar=4‐tBuC6H4 or 9‐anthryl) in the presence of cyclic oligoethers such as dibenzo[24]crown‐8 (DB24C8) and dicyclohexano[24]crown‐8 (DC24C8) produces {(ce)[ArCH2NH2CH2C6H4COOPt(Ph)(cod)]}+(PF6)? (ce=DB24C8 or DC24C8, Ar=4‐tBuC6H4 or 9‐anthryl) with interlocked structures. FABMS and NMR spectra of a solution of these compounds indicate that the Pt complexes with a secondary ammonium group and DB24C8 (or DC24C8) make up the axis and cyclic components, respectively. Temperature‐dependent 1H NMR spectra of a solution of {(DB24C8)[4‐tBuC6H4CH2NH2CH2‐C6H4COOPt(Ph)(cod)]}+(PF6)? ({(DB24C8)[ 4 ‐H]}+(PF6)?) show equilibration with free DB24C8 and the axis component. The addition of DB24C8 to a solution of {(DC24C8)[ 4 ‐H]}+(PF6)? causes partial exchange of the macrocyclic component of the interlocked molecules, giving a mixture of {(DC24C8)[ 4 ‐H]}+(PF6)?, {(DB24C8)[ 4 ‐H]}+(PF6)?, and free macrocyclic compounds. The reaction of 3,5‐Me2C6H3COCl with {(DB24C8)[ 4 ‐H]}+(PF6)? affords the organic rotaxane {(DB24C8)(4‐tBuC6H4CH2NH2CH2‐C6H4COOCOC6H3Me2‐3,5)}+(PF6)? through C? O bond formation between the aroyl group and the carboxylate ligand of the axis component. The addition of 2,2′‐bipyridine (bpy) to a solution of {(DB24C8)[ 4 ‐H]}+(PF6)? induces the degradation of the interlocked structure to form a complex with trigonal bipyramidal coordination, [Pt(Ph)(bpy)(cod)]+(PF6)?, whereas the reaction of bpy with [Pt(OCOC6H4Me‐4)(Ph)(cod)] produces the square‐planar complex [Pt(OCOC6H4Me‐4)(Ph)(bpy)].  相似文献   

14.
Hydrogenolysis of the half‐sandwich penta‐arylcyclopentadienyl‐supported heavy alkaline‐earth‐metal alkyl complexes (CpAr)Ae[CH(SiMe3)2](S) (CpAr=C5Ar5, Ar=3,5‐iPr2‐C6H3; S=THF or DABCO) in hexane afforded the calcium, strontium, and barium metal–hydride complexes as the same dimers [(CpAr)Ae(μ‐H)(S)]2 (Ae=Ca, S=THF, 2‐Ca ; Ae=Sr, Ba, S=DABCO, 4‐Ae ), which were characterized by NMR spectroscopy and single‐crystal X‐ray analysis. 2‐Ca , 4‐Sr , and 4‐Ba catalyzed alkene hydrogenation under mild conditions (30 °C, 6 atm, 5 mol % cat.), with the activity increasing with the metal size. A variety of activated alkenes including tri‐ and tetra‐substituted olefins, semi‐activated alkene (Me3SiCH=CH2), and unactivated terminal alkene (1‐hexene) were evaluated.  相似文献   

15.
A series of NCO/NCS pincer precursors, 3‐(Ar2OCH2)‐2‐Br‐(Ar1N?CH)C6H3 ((Ar1NCOAr2)Br, 3a , 3b , 3c , 3d ) and 3‐(2,6‐Me2C6H3SCH2)‐2‐Br‐(Ar1N?CH)C6H3 ((Ar1NCSMe)Br, 4a and 4b ) were synthesized and characterized. The reactions of [Ar1NCOAr2]Br/ [Ar1NCSMe]Br with nBuLi and the subsequent addition of the rare‐earth‐metal chlorides afforded their corresponding rare‐earth‐metal–pincer complexes, that is, [(Ar1NCOAr2)YCl2(thf)2] ( 5a , 5b , 5c , 5d ), [(Ar1NCOAr2)LuCl2(thf)2] ( 6a , 6d ), [(Ar1NCOAr2)GdCl2(thf)2] ( 7 ), [{(Ar1NCSMe)Y(μ‐Cl)}2{(μ‐Cl)Li(thf)2(μ‐Cl)}2] ( 8 , 9 ), and [{(Ar1NCSMe)Gd(μ‐Cl)}2{(μ‐Cl)Li(thf)2(μ‐Cl)}2] ( 10 , 11 ). These diamagnetic complexes were characterized by 1H and 13C NMR spectroscopy and the molecular structures of compounds 5a , 6a , 7 , and 10 were well‐established by X‐ray diffraction analysis. In compounds 5a , 6a , and 7 , all of the metal centers adopted distorted pentagonal bipyramidal geometries with the NCO donors and two oxygen atoms from the coordinated THF molecules in equatorial positions and the two chlorine atoms in apical positions. Complex 10 is a dimer in which the two equal moieties are linked by two chlorine atoms and two Cl? Li? Cl bridges. In each part, the gadolinium atom adopts a distorted pentagonal bipyramidal geometry. Activated with alkylaluminum and borate, the gadolinium and yttrium complexes showed various activities towards the polymerization of isoprene, thereby affording highly cis‐1,4‐selective polyisoprene, whilst the NCO? lutetium complexes were inert under the same conditions.  相似文献   

16.
Like C60, C70 is one of the most representative fullerenes in fullerene science. Even though there are 8149 C70 isomers, only two of them have been found before: the conventional D5h and an isolated pentagon rule (IPR)‐violating C2v(7854). Through the use of quantum chemical methods, we report a new unconventional C70 isomer, C2(7892), which survives in the form of dimetallic sulfide endohedral fullerene Sc2S@C70. Compared with the IPR‐obeying C70 and the C2v(7854) fullerene with three pairs of pentagon adjacencies, the C2(7892) cage violates the isolated pentagon rule and has two pairs of pentagon adjacencies. In Sc2S@C2(7892)‐C70, two scandium atoms coordinate with two pentalene motifs, respectively, presenting two equivalent Sc? S bonds. The strong coordination interaction, along with the electron transfer from the Sc2S cluster to the fullerene cage, results in the stabilization of the non‐IPR endohedral fullerene. The electronic structure of Sc2S@C70 can be formally described as [Sc2S]4+@[C70]4?; however, a substantial overlap between the metallic orbitals and cage orbitals has also been found. Electrochemical properties and electronic absorption, infrared, and 13C NMR spectra of Sc2S@C70 have been calculated theoretically.  相似文献   

17.
The chemistry of polyphosphorus cations has rapidly developed in recent years, but their coordination behavior has remained mostly unexplored. Herein, we describe the reactivity of [P5R2]+ cations with cyclopentadienyl metal complexes. The reaction of [CpArFe(μ‐Br)]2 (CpAr=C5(C6H4‐4‐Et)5) with [P5R2][GaCl4] (R=iPr and 2,4,6‐Me3C6H2 (Mes)) afforded bicyclo[1.1.0]pentaphosphanes ( 1‐R , R=iPr and Mes), showing an unsymmetric “butterfly” structure. The same products 1‐R were formed from K[CpAr] and [P5R2][GaCl4]. The cationic complexes [CpArCo(η4‐P5R2)][GaCl4] ( 2‐R [GaCl4], R=iPr and Cy) and [(CpArNi)23:3‐P5R2)][GaCl4] ( 3‐R [GaCl4]) were obtained from [P5R2][GaCl4] and [CpArM(μ‐Br)]2 (M=Co and Ni) as well as by using low‐valent “CpArMI” sources. Anion metathesis of 2‐R [GaCl4] and 3‐R [GaCl4] was achieved with Na[BArF24]. The P5 framework of the resulting salts 2‐R [BArF24] can be further functionalized with nucleophiles. Thus reactions with [Et4N]X (X=CN and Cl) give unprecedented cyano‐ and chloro‐functionalized complexes, while organo‐functionalization was achieved with CyMgCl.  相似文献   

18.
To clarify the nature of the Mo?Carene interaction in terphenyl complexes with quadruple Mo?Mo bonds, ether adducts of composition [Mo2(Ar′)(I)(O2CR)2(OEt2)] have been prepared and characterized (Ar′=ArXyl2, R=Me; Ar′=ArMes2, R=Me; Ar′=ArXyl2, R=CF3) (Mes=mesityl; Xyl=2,6‐Me2C6H3, from now on xylyl) and their reactivity toward different neutral Lewis bases investigated. PMe3, P(OMe)3 and PiPr3 were chosen as P‐donors and the reactivity studies complemented with the use of the C‐donors CNXyl and CN2C2Me4 (1,3,4,5‐tetramethylimidazol‐2‐ylidene). New compounds of general formula [Mo2(Ar′)(I)(O2CR)2( L )] were obtained, except for the imidazol‐2‐ylidene ligand that yielded a salt‐like compound of composition [Mo2(ArXyl2)(O2CMe)2(CN2C2Me4)2]I. The Mo?Carene interaction in these complexes has been analyzed with the aid of X‐ray data and computational studies. This interaction compensates the coordinative and electronic unsaturation of one of the Mo atoms in the above complexes, but it seems to be weak in terms of sharing of electron density between the Mo and Carene atoms and appears to have no appreciable effect in the length of the Mo?Mo, Mo?X, and Mo? L bonds present in these molecules.  相似文献   

19.
Self‐immobilized nickel and iron diimine catalysts bearing one or two allyl groups of [ArN?C]2(C10H6)NiBr2 [Ar = 4‐allyl‐2,6‐(i‐Pr)2C6H2] ( 1 ), [ArN?C(Me)][Ar′N? C(Me)]C5H3NFeCl2 [Ar = Ar′ = 4‐allyl‐2,6‐(i‐Pr)2C6H3, Ar = 2,6‐(i‐Pr)2C6H3, and Ar′ = 4‐allyl‐2,6‐(i‐Pr)2C6H3] were synthesized and characterized. All three catalysts were investigated for olefin polymerization. As a result, these catalysts not only showed high activities as the catalyst free from the allyl group, such as [ArN?C]2C10H6NiBr2 (Ar = 2,6‐(i‐Pr)2C6H2)], but also greatly improved the morphology of polymer particles to afford micron‐granula polyolefin. The self‐immobilization of catalysts, the formation mechanism of microspherical polymer, and the influence on the size of the particles are discussed. The molecular structure of self‐immobilized nickel catalyst 1 was also characterized by crystallographic analysis. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1018–1024, 2004  相似文献   

20.
The generation of heavier double‐bond systems without by‐ or side‐product formation is of considerable importance for their application in synthesis. Peripheral functional groups in such alkene homologues are promising in this regard owing to their inherent mobility. Depending on the steric demand of the N‐alkyl substituent R, the reaction of disilenide Ar2Si?Si(Ar)Li (Ar=2,4,6‐iPr3C6H2) with ClP(NR2)2 either affords the phosphinodisilene Ar2Si?Si(Ar)P(NR2)2 (for R=iPr) or P‐amino functionalized phosphasilenes Ar2(R2N)Si? Si(Ar)?P(NR2) (for R=Et, Me) by 1,3‐migration of one of the amino groups. In case of R=Me, upon addition of one equivalent of tert‐butylisonitrile a second amino group shift occurs to yield the 1‐aza‐3‐phosphaallene Ar2(R2N)Si? Si(NR2)(Ar)? P?C?NtBu with pronounced ylidic character. All new compounds were fully characterized by multinuclear NMR spectroscopy as well as single‐crystal X‐ray diffraction and DFT calculations in selected cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号