首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
赵颖异a  马建毅b  赵晓军a  李象远  ab 《中国化学》2008,26(11):2003-2008
基于连续介质模型,本文考察了多肽体系Trp-(Pro)n-Tyr (n=1,2) 从酪氨酸到色氨酸的分子内电子转移,并根据电荷定域的反应物和产物构型和线性反应坐标近似构造了电子转移的双势阱,通过势能曲线的交叉点确定了电子转移过渡态。本文重点讨论了电子转移溶剂重组能。根据作者的非平衡溶剂化理论和可极化连续介质模型编写了溶剂重组能计算程序并用于本文体系的计算。计算得到Trp-Pro-Tyr 和Trp-(Pro)2-Tyr.体系的溶剂重组能分别为20.89 kcal/mol和25.30 kcal/mol.  相似文献   

2.
The review summarizes the results of studies on specific features of spin relaxation of radicals in liquids in weak magnetic fields. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1642–1654, October, 2006.  相似文献   

3.
4.
Molecular modeling, electrochemical methods, and quartz crystal microbalance were used to characterize immobilized hexameric tyrosine‐coordinated heme protein (HTHP) on bare carbon or on gold electrodes modified with positively and negatively charged self‐assembled monolayers (SAMs), respectively. HTHP binds to the positively charged surface but no direct electron transfer (DET) is found due to the long distance of the active sites from the electrode surfaces. At carboxyl‐terminated surfaces, the neutrally charged bottom of HTHP can bind to the SAM. For this “disc” orientation all six hemes are close to the electrode and their direct electron transfer should be efficient. HTHP on all negatively charged SAMs showed a quasi‐reversible redox behavior with rate constant ks values between 0.93 and 2.86 s?1 and apparent formal potentials ${E{{0{^{\prime }}\hfill \atop {\rm app}\hfill}}}$ between ‐131.1 and ‐249.1 mV. On the MUA/MU‐modified electrode, the maximum surface concentration corresponds to a complete monolayer of the hexameric HTHP in the disc orientation. HTHP electrostatically immobilized on negatively charged SAMs shows electrocatalysis of peroxide reduction and enzymatic oxidation of NADH.  相似文献   

5.
A new π‐conjugated copolymer, namely, poly{cyanofluore‐alt‐[5‐(N,N′‐diphenylamino)phenylenevinylene]} ((CNF–TPA)n), was synthesized by condensation polymerization of 2,2′‐(9,9‐dioctyl‐9H‐fluorene‐2,7‐diyl)diacetonitrile and 5‐(N,N′‐diphenylamino)benzene‐1,3‐dicarbaldehyde by using the Knoevenagel reaction. By design, diphenylamine, alkylfluorene and poly(p‐phenylenevinylene) linkages were combined to form a (CNF–TPA)n copolymer which exhibits high thermal stability and glass‐transition temperature. Photodynamic measurements in polar benzonitrile indicate fast and efficient photoinduced electron transfer (≈1011 s?1) from triphenylamine (TPA) to cyanofluorene (CNF) to produce the long‐lived charge‐separated state (90 μs). The finding that the charge‐recombination process of (CNF.?–TPA.+)n is much slower than the charge separation in polar benzonitrile suggests a potential application in molecular‐level electronic and optoelectronic devices.  相似文献   

6.
The broadband light‐absorption ability of carbon dots (CDs) has inspired their application in photocatalysis, however this has been impeded by poor electron transfer inside the CDs. Herein, we report the preparation of Cu–N‐doped CDs (Cu‐CDs) and investigate both the doping‐promoted electron transfer and the performance of the CDs in photooxidation reactions. The Cu–N doping was achieved through a one‐step pyrolytic synthesis of CDs with Na2[Cu(EDTA)] as precursor. As confirmed by ESR, FTIR, and X‐ray photoelectron spectroscopies, the Cu species chelates with the carbon matrix through Cu–N complexes. As a result of the Cu–N doping, the electron‐accepting and ‐donating abilities were enhanced 2.5 and 1.5 times, and the electric conductivity was also increased to 171.8 μs cm?1. As a result of these enhanced properties, the photocatalytic efficiency of CDs in the photooxidation reaction of 1,4‐dihydro‐2,6‐dimethylpyridine‐3,5‐dicarboxylate is improved 3.5‐fold after CD doping.  相似文献   

7.
Change happens : Acridine–carbon nanotube nanohybrids were built (see figure) and their photoinduced electron‐transfer properties investigated, showing variable behaviour depending on the acridine partner.

  相似文献   


8.
An efficient catalytic one‐step conversion of benzene to phenol was achieved recently by selective photooxidation under mild conditions with 2,3‐dichloro‐5,6‐dicyano‐p‐benzoquinone (DDQ) as the photocatalyst. Herein, high‐level electronic structure calculations in the gas phase and in acetonitrile solution are reported to explore the underlying mechanism. The initially populated 1ππ* state of DDQ can relax efficiently through a nearby dark 1nπ* doorway state to the 3ππ* state of DDQ, which is found to be the precursor state involved in the initial intermolecular electron transfer from benzene to DDQ. The subsequent triplet‐state reaction between DDQ radical anions, benzene radical cations, and water is computed to be facile. The formed DDQH and benzene‐OH radicals can undergo T1→S0 intersystem crossing and concomitant proton‐coupled electron transfer (PCET) to generate the products DDQH2 and phenol. Two of the four considered nonadiabatic pathways involve an orientation‐dependent triplet PCET process, followed by intersystem crossing to the ground state (S0). The other two first undergo a nonadiabatic T1→S0 transition to produce a zwitterionic S0 complex, followed by a barrierless proton transfer. The present theoretical study identifies novel types of nonadiabatic PCET processes and provides detailed mechanistic insight into DDQ‐catalyzed photooxidation.  相似文献   

9.
The electron spin resonance studies were carried out for 2 mm concentration of 14N‐labeled and 15N‐labeled 3‐carbamoyl‐2,2,5,5‐tetramethyl‐pyrrolidine‐1‐oxyl, 3‐carboxy‐2,2,5,5‐tetramethyl‐pyrrolidine‐1‐oxyl, 3‐methoxycarbonyl‐2,2,5,5‐tetramethyl‐pyrrolidine‐1‐oxyl and their deuterated nitroxyl radicals using X‐band electron spin resonance spectrometer. The electron spin resonance line shape analysis was carried out. The electron spin resonance parameters such as linewidth, Lorentzian component, signal intensity ratio, rotational correlation time, hyperfine coupling constant and g‐factor were estimated. The deuterated nitroxyl radicals have narrow linewidth and an increase in Lorentzian component, compared with undeuterated nitroxyl radicals. The dynamic nuclear polarization factor was observed for all nitroxyl radicals. Upon 2H labeling, about 70% and 40% increase in dynamic nuclear polarization factor were observed for 14N‐labeled and 15N‐labeled nitroxyl radicals, respectively. The signal intensity ratio and g‐value indicate the isotropic nature of the nitroxyl radicals in pure water. Therefore, the deuterated nitroxyl radicals are suitable spin probes for in vivo/in vitro electron spin resonance and Overhauser‐enhanced magnetic resonance imaging modalities. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
《中国化学会会志》2018,65(2):163-188
We present a few novel pulsed electron paramagnetic resonance techniques developed in our laboratory for the studies of structure and dynamics of the photo‐excited triplet state of organic molecules. We discuss many aspects of these new techniques and the significances of these measurements: (1) enhancing NMR signal intensity by dynamic nuclear polarization ‐ integrated solid effect, (2) performing magnetic resonance in zero‐field and low‐field by pulsed microwave, (3) mapping molecular motion of organic crystals by pulsed zero‐field and low‐field experiments, (4) probing spin dynamics at level anti‐crossing by fast field switching, (5) measuring hyperfine interaction by electron spin echo envelop modulation and spin‐echo electron nuclear double resonance and (6) detecting spin dynamics, nuclear quantum oscillation, entanglements and new avenues for quantum computer. We have employed the highly electron spin polarized pentacene triplet state as the model system in all of our pulsed EPR experiments. We performed most of our experiments at room temperature. The goals of our studies are aiming to improve spin detectability, to probe molecular dynamics, to determine electronic structures, to measure molecular interaction and motion, and to examine quantum coherence and oscillation which may yield new avenues in the applications of pulsed EPR techniques to quantum computer.  相似文献   

11.
12.
We report the synthesis, characterization, and optical and electrochemical properties of two structurally similar coumarin dyes ( C1 and C2 ). These dyes have been deployed as sensitizers in TiO2 nanoparticles and thin films, and the effect of molecular structure on interfacial electron‐transfer dynamics has been studied. Steady‐state optical absorption, emission, and time‐resolved emission studies on both C1 and C2 , varying the polarity of the solvent and the solution pH, suggest that both photoexcited dyes exist in a locally excited (LE) state in solvents of low polarity. In highly polar solvents, however, C1 exists in an intramolecular charge‐transfer (ICT) state, whereas C2 exists in both ICT and twisted intramolecular charge‐transfer (TICT) states, their populations depending on the degree of polarity of the solvent and the pH of the solution. We have employed femtosecond transient absorption spectroscopy to monitor the charge‐transfer dynamics in C1 ‐ and C2 ‐sensitized TiO2 nanoparticles and thin films. Electron injection has been confirmed by direct detection of electrons in the conduction band of TiO2 nanoparticles and of radical cations of the dyes in the visible and near‐IR regions of the transient absorption spectra. Electron injection in both the C1 /TiO2 and C2 /TiO2 systems has been found to be pulse‐width limited (<100 fs); however, back‐electron‐transfer (BET) dynamics has been found to be slower in the C2 /TiO2 system than in the C1 /TiO2 system. The involvement of TICT states in C2 is solely responsible for the higher electron injection yield as well as the slower BET process compared to those in the C1 /TiO2 system. Further pH‐dependent experiments on C1 ‐ and C2 ‐sensitized TiO2 thin films have corroborated the participation of the TICT state in the slower BET process in the C2 /TiO2 system.  相似文献   

13.
In this overview, modern multifrequency EPR spectroscopy, in particular at high magnetic fields, is shown to provide detailed information about structure, motional dynamics, and spin chemistry of transient radicals and radical pairs occurring in photochemical reactions. Examples discussed comprise photochemical reactions in liquid solution and light‐initiated electron transfer processes both in biomimetic donor–acceptor model systems in frozen solution or liquid crystals and in natural photosynthetic‐reaction‐center protein complexes. The transient paramagnetic states exhibit characteristic electron polarization (CIDEP) effects. They contain valuable information about structure and dynamics of the transient reaction intermediates. Moreover, they are exploited for signal enhancement. Continuous‐wave (cw) and pulsed versions of time‐resolved high‐field EPR spectroscopy, such as cw‐transient‐EPR (TREPR) and pulsed‐electron‐spin‐echo (ESE) experiments, are compared with respect to their advantages and limitations for the specific system under study. For example, W‐band (95‐GHz) TREPR spectroscopy in conjunction with a continuous‐flow system for light‐generated short‐lived transient spin‐polarized radicals of organic photoinitiators in solution was performed with a time resolution of 10 ns. The increased Boltzmann polarization at high fields even allows detection of transient radicals without CIDEP effects. This enables one to determine initial radical polarization contributions as well as radical‐addition reaction constants. Another example of the power of combined X‐band and W‐band TREPR spectroscopy is given for the complex electron‐transfer and spin dynamics of covalently linked porphyrin–quinone as well as Watson–Crick base‐paired porphyrin–dinitrobenzene donor–acceptor biomimetic model systems. Furthermore, W‐band ESE experiments on the spin‐correlated coupled radical pair in reaction centers of the purple photosynthetic bacterium Rb. sphaeroides reveal details of distance and orientation of the pair partners in their charge‐separated transient state. The results are compared with those of the ground‐state P865QA. The high orientation selectivity of high‐field EPR provides single‐crystal‐like information even from disordered frozen‐solution samples. The examples given demonstrate that high‐field EPR adds substantially to the capability of ‘classical’ spectroscopic and diffraction techniques for determining structure–dynamics–function relations of biochemical systems, since transient intermediates can be observed in real time in their working states on biologically relevant time scales.  相似文献   

14.
15.
Chemically induced dynamic nuclear polarization (CIDNP) observed during electron transfer (ET) reactions of tertiary amines such as DABCO ( 1 ) or Et3N ( 2 ) with a wide range of electron acceptors support the involvement of amine radical‐cations (e.g., 1. + or 2. + ) as key intermediates. Radical ions such as 2. + may be deprotonated, generating neutral aminoalkyl radicals (e.g., 2. ). When generated by reaction with an electron acceptor of energetically low triplet state such as naphthalene (1Naph*), the resulting pair 2. + /Naph.? reacts mostly by reverse electron transfer (RET) from triplet pairs populating the naphthalene triplet state.  相似文献   

16.
17.
We investigate a biomimetic model of a TyrZ/His190 pair, a hydrogen‐bonded phenol/imidazole covalently attached to a porphyrin sensitizer. Laser flash photolysis in the presence of an external electron acceptor reveals the need for water molecules to unlock the light‐induced oxidation of the phenol through an intramolecular pathway. Kinetics monitoring encompasses two fast phases with distinct spectral properties. The first phase is related to a one‐electron transfer from the phenol to the porphyrin radical cation coupled with a domino two‐proton transfer leading to the ejection of a proton from the imidazole–phenol pair. The second phase concerns conveying the released proton to the porphyrin N4 coordinating cavity. Our study provides an unprecedented example of a light‐induced electron‐transfer process in a TyrZ/His190 model of photosystem II, evidencing the movement of both the phenol and imidazole protons along an isoenergetic pathway.  相似文献   

18.
19.
Radical observation : Time‐resolved magnetic‐field effects yield a very detailed picture of electron‐transfer quenching in micelles and of the fate of the resulting radical‐ion pairs. The system xanthone/DABCO (A/D, see figure) permits a separation of the different static and dynamic quenching pathways and a distinction between bulk and surface diffusion.

  相似文献   


20.
A novel, highly stable photochromic dyad 3 based on a perylene bisimide (PBI) fluorophore and a diarylethene (DAE) photochrome was synthesized and the optical and photophysical properties of this dyad were studied in detail by steady‐state and time‐resolved ultrafast spectroscopy. This photochromic dyad can be switched reversibly by UV‐light irradiation of its ring‐open form 3 o leading to the ring‐closed form 3 c , and back reaction of 3 c to 3 o by irradiation with visible light. Solvent‐dependent fluorescence studies revealed that the emission of ring‐closed form 3 c is drastically quenched in solvents of medium (e.g., chloroform) to high (e.g., acetone) polarities, while the emission of the ring‐open form 3 o is appreciably quenched only in highly polar solvents like DMF. The strong fluorescence quenching of 3 c is attributed to a photoinduced electron‐transfer (PET) process from the excited PBI unit to ring‐closed DAE moiety, as this process is thermodynamically highly favorable with a Gibbs free energy value of ?0.34 eV in dichloromethane. The electron‐transfer mechanism for the fluorescence quenching of ring‐closed 3 c is substantiated by ultrafast transient measurements in dichloromethane and acetone, revealing stabilization of charge‐separated states of 3 c in these solvents. Our results reported here show that the new photochromic dyad 3 has potential for nondestructive read‐out in write/read/erase fluorescent memory systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号