首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
For well over 20 years, μ‐oxo‐diiron corroles, first reported by Vogel and co‐workers in the form of μ‐oxo‐bis[(octaethylcorrolato)iron] (Mössbauer δ 0.02 mm s?1, ΔEQ 2.35 mm s?1), have been thought of as comprising a pair antiferromagnetically coupled low‐spin FeIV centers. The remarkable stability of these complexes, which can be handled at room temperature and crystallographically analyzed, present a sharp contrast to the fleeting nature of enzymatic, iron(IV)‐oxo intermediates. An array of experimental and theoretical methods have now shown that the iron centers in these complexes are not FeIV but intermediate‐spin FeIII coupled to a corrole.2?. The intramolecular spin couplings in {Fe[TPC]}2(μ‐O) were analyzed via DFT(B3LYP) calculations in terms of the Heisenberg–Dirac–van Vleck spin Hamiltonian H=JFe–corrole(SFe?Scorrole)+JFe–Fe′(SFe?SFe′)+JFe′–corrole(SFe′?Scorrole′), which yielded JFe–corrole=JFe′–corrole′=0.355 eV (2860 cm?1) and JFe–Fe′=0.068 eV (548 cm?1). The unexpected stability of μ‐oxo‐diiron corroles thus appears to be attributable to charge delocalization via ligand noninnocence.  相似文献   

2.
The local spin formalism ( 3 ) for computing expectation values 〈SA · SB〉 that appear in the Heisenberg spin model has been extended to semiempirical single determinant wave functions. An alternative derivation of expectation values in restricted and unrestricted cases is given that takes advantage of the zero differential overlap (ZDO) approximation. A formal connection between single determinant wave functions (which are not in general spin eigenfunctions) and the Heisenberg spin model was established by demonstrating that energies of single determinants that are eigenfunctions of the local spin operators with eigenvalues corresponding to high‐spin radical centers are given by the same Heisenberg coupling constants {JAB} that describe the true spin states of the system. Unrestricted single determinant wave functions for transition metal complexes are good approximations of local spin eigenfunctions when the metal d orbitals are local in character and all unpaired electrons on each metal have the same spin (although spins on different metals might be reversed). Good approximations of the coupling constants can then be extracted from local spin expectation values 〈SA · SB〉 energies of the single determinant wave functions. Once the coupling constants are obtained, diagonalization of the Heisenberg spin Hamiltonian provides predictions of the energies and compositions of the spin states. A computational method is presented for obtaining coupling constants and spin‐state energies in this way for polynuclear transition metal complexes using the intermediate neglect of differential overlap Hamiltonian parameterized for optical spectroscopy (INDO/S) in the ZINDO program. This method is referred to as ZILSH, derived from ZINDO, Davidson's local spin formalism, and the Heisenberg spin model. Coupling constants and spin ground states obtained for 10 iron complexes containing from 2 to 6 metals are found to agree well with experimental results in most cases. In the case of the complex [Fe6O3(OAc)9(OEt)2(bpy)2]+, a priori predictions of the coupling constants yield a ground‐state spin of zero, in agreement with variable‐temperature magnetization data, and corroborate spin alignments proposed earlier on the basis of structural considerations. This demonstrates the potential of the ZILSH method to aid in understanding magnetic interactions in polynuclear transition metal complexes. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

3.
The magnetism of μ-oxo-bis[(5,15-dimethyl-2,3,7,8,12,13,17,18-octaethylporphyrinato)iron(III)] with bridge geometry d(Fe? O) = 1.752 Å and ?(Fe? O? Fe) = 178.6° can be explained in terms of antiferromagnetically exchange coupled iron(III)-3d5 pairs. The magnetochemical analysis in the temperature range 6K–295K on the basis of the isotropic Heisenberg model (spin Hamiltonian: ? = ?2J?1 · ?2 S1 = S2 = 5/2) leads to the exchange parameter J = ?125 cm?1. With regard to the Fe? O bond length the J value corresponds to the series of data observed for other μ-oxodiiron-porphyrins and -porphycenes. Compared to the spin-spin coupling in [Fe2Cl6O]2?, |J| is enhanced by ≈ 10%.  相似文献   

4.
The highly stable nitrosyl iron(II) mononuclear complex [Fe(bztpen)(NO)](PF6)2 (bztpen=N‐benzyl‐N,N′,N′‐tris(2‐pyridylmethyl)ethylenediamine) displays an S=1/2?S=3/2 spin crossover (SCO) behavior (T1/2=370 K, ΔH=12.48 kJ mol?1, ΔS=33 J K?1 mol?1) stemming from strong magnetic coupling between the NO radical (S=1/2) and thermally interconverted (S=0?S=2) ferrous spin states. The crystal structure of this robust complex has been investigated in the temperature range 120–420 K affording a detailed picture of how the electronic distribution of the t2g–eg orbitals modulates the structure of the {FeNO}7 bond, providing valuable magneto–structural and spectroscopic correlations and DFT analysis.  相似文献   

5.
Density functional theory (DFT) calculations with different exchange‐correlation functionals were performed for a mixed valence Fe(II)/Fe(III) binuclear complex with μ‐methoxo and two μ‐carboxylate bridging ligands, (1) with geometry optimizations being performed for all possible spin multiplicities (MS = 2, 4, 6, 8, and 10). Within the exchange‐correlation functionals studied, only the hybrid GGA functionals B3P and B3LYP and also the pure GGA functional RPBE, predicts the geometry with high spin (S = 9/2) to be more stable than the geometry with low spin state (S = 1/2) by 20 kcal/mol, in agreement with the experimental findings. These functionals also predict the same stability order for the different spin states, being MS = 10>8>6>2>4. The meta‐GGA functionals TPSS and TPSSh and also the pure GGA functionals BLYP and BP86 predict different stability orders. The computed average EPR g‐tensor, gav, of 2.03, at the B3LYP level, is in good agreement with the experimental findings. Heisenberg exchange coupling constants, J, were calculated within the broken‐symmetry formalism, at the B3LYP level, showing that the two iron centers are antiferromagnetic coupling, with a very weak coupling constant of about ?7 cm?1, in good agreement with the experimental value. Additionally, the effect of using different multiplicities of the reference geometries on the computed J value is discussed. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

6.
This paper reports a theoretical analysis of the electronic structure and magnetic properties of a tetranuclear CuII complex, [Cu4(HL)4], which has a 4+2 cubane‐like structure (H3L=N,N′‐(2‐hydroxypropane‐1,3‐diyl)bis(acetylacetoneimine)). These theoretical calculations indicate a quintet (S=2) ground state; the energy‐level distribution of the magnetic states confirm Heisenberg behaviour and correspond to an S4 spin–spin interaction model. The dominant interaction is the ferromagnetic coupling between the pseudo‐dimeric units (J1=22.2 cm?1), whilst a weak and ferromagnetic interaction is found within the pseudo‐dimeric units (J2=1.4 cm?1). The amplitude and sign of these interactions are consistent with the structure and arrangement of the magnetic Cu 3d orbitals; they accurately simulate the thermal dependence of magnetic susceptibility, but do not agree with the reported J values (J1=38.4 cm?1, J2=?18.0 cm?1) that result from the experimental fitting. This result is not an isolated case; many other polynuclear systems, in particular 4+2 CuII cubanes, have been reported in which the fitted magnetic terms are not consistent with the geometrical features of the system. In this context, theoretical evaluation can be considered as a valuable tool in the interpretation of the macroscopic behaviour, thus providing clues for a rational and directed design of new materials with specific properties.  相似文献   

7.
The 1J(11B19F) spin–spin coupling of gaseous BF3 was observed in 11B NMR spectra as a function of density in a wide range of temperatures. Following the extrapolation of the measured values to the zero‐density limit, the coupling constant free from intermolecular effects 1J0(11B19F) was obtained for each temperature. In contrast to previous investigations, the final results indicate a nonlinear dependence of 1J0(11B19F) on temperature. In the corresponding ab initio calculations of spin–spin coupling constants performed at the coupled cluster singles and doubles (CCSD) level to obtain a reliable result for this coupling constant we had to take into account large vibrational corrections. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The synthesis, structure, and properties of bischloro, μ‐oxo, and a family of μ‐hydroxo complexes (with BF4?, SbF6?, and PF6? counteranions) of diethylpyrrole‐bridged diiron(III) bisporphyrins are reported. Spectroscopic characterization has revealed that the iron centers of the bischloro and μ‐oxo complexes are in the high‐spin state (S=5/2). However, the two iron centers in the diiron(III) μ‐hydroxo complexes are equivalent with high spin (S=5/2) in the solid state and an intermediate‐spin state (S=3/2) in solution. The molecules have been compared with previously known diiron(III) μ‐hydroxo complexes of ethane‐bridged bisporphyrin, in which two different spin states of iron were stabilized under the influence of counteranions. The dimanganese(III) analogues were also synthesized and spectroscopically characterized. A comparison of the X‐ray structural parameters between diethylpyrrole and ethane‐bridged μ‐hydroxo bisporphyrins suggest an increased separation, and hence, less interactions between the two heme units of the former. As a result, unlike the ethane‐bridged μ‐hydroxo complex, both iron centers become equivalent in the diethylpyrrole‐bridged complex and their spin state remains unresponsive to the change in counteranion. The iron(III) centers of the diethylpyrrole‐bridged diiron(III) μ‐oxo bisporphyrin undergo very strong antiferromagnetic interactions (J=?137.7 cm?1), although the coupling constant is reduced to only a weak value in the μ‐hydroxo complexes (J=?42.2, ?44.1, and ?42.4 cm?1 for the BF4, SbF6, and PF6 complexes, respectively).  相似文献   

9.
FeI centers in iron–sulfide complexes have little precedent in synthetic chemistry despite a growing interest in the possible role of unusually low valent iron in metalloenzymes that feature iron–sulfur clusters. A series of three diiron [(L3Fe)2(μ‐S)] complexes that were isolated and characterized in the low‐valent oxidation states FeII? S? FeII, FeII? S? FeI, and FeI? S? FeI is described. This family of iron sulfides constitutes a unique redox series comprising three nearly isostructural but electronically distinct Fe2(μ‐S) species. Combined structural, magnetic, and spectroscopic studies provided strong evidence that the pseudotetrahedral iron centers undergo a transition to low‐spin S=1/2 states upon reduction from FeII to FeI. The possibility of accessing low‐spin, pseudotetrahedral FeI sites compatible with S2? as a ligand was previously unknown.  相似文献   

10.
A major barrier to understanding the mechanism of nitric oxide reductases (NORs) is the lack of a selective probe of NO binding to the nonheme FeB center. By replacing the heme in a biosynthetic model of NORs, which structurally and functionally mimics NORs, with isostructural ZnPP, the electronic structure and functional properties of the FeB nitrosyl complex was probed. This approach allowed observation of the first S=3/2 nonheme {FeNO}7 complex in a protein‐based model system of NOR. Detailed spectroscopic and computational studies show that the electronic state of the {FeNO}7 complex is best described as a high spin ferrous iron (S=2) antiferromagnetically coupled to an NO radical (S= 1/2) [Fe2+‐NO.]. The radical nature of the FeB‐bound NO would facilitate N? N bond formation by radical coupling with the heme‐bound NO. This finding, therefore, supports the proposed trans mechanism of NO reduction by NORs.  相似文献   

11.
The reaction of 4‐(1,2,4‐triazol‐4‐yl)ethanesulfonate ( L ) with Zn2+, Cu2+, Ni2+, Co2+, and Fe2+ gave a series of analogous neutral trinuclear complexes with the formula [M3(μ‐ L )6(H2O)6] ( 1 – 5 ). These compounds were characterized by single‐crystal X‐ray diffraction, thermogravimetry, and elemental analysis. The magnetic properties of compounds 2 – 5 were studied. Complexes 2 – 4 show weak antiferromagnetic superexchange, with J values of ?0.33 ( 2 ), ?9.56 ( 3 ), and ?4.50 cm?1 ( 4 ) (exchange Hamiltonian H=?2 J (S1S2+S2S3)). Compound 5 shows two additional crystallographic phases ( 5 b and 5 c ) that can be obtained by dehydration and/or thermal treatment. These three phases exhibit distinct magnetic behavior. The Fe2+ centers in 5 are in high‐spin (HS) configuration at room temperature, with the central one exhibiting a non‐cooperative gradual spin transition below 250 K with T1/2=150 K. In 5 b , the central Fe2+ stays in its low‐spin (LS) state at room temperature, and cooperative spin transition occurs at higher temperatures and with the appearance of memory effect (T1/2↑=357 K and T1/2↓=343 K). In the case of 5 c , all iron centers remain in their HS configuration down to very low temperatures, with weak antiferromagnetic coupling (J=?1.16 cm?1). Compound 5 b exhibits spin transition with memory effect at the highest temperature reported, which matches the remarkable features of coordination polymers.  相似文献   

12.
Intramolecular Antiferromagnetism in [Cr2(μ-NH2)3(NH3)6]I3 The magnetism of [Cr2(μ-NH2)3(NH3)6]I3 which consists of binuclear cations with NH2?-bridged face-sharing octahedral coordination polyhedra and a metal-metal separation of 264.9 pm can be explained by antiferromagnetically exchange-coupled CrIII-3d3 pairs. The magnetochemical analysis in the temperature range 5 K – 295 K on the basis of the isotropic Heisenberg model (spin Hamiltonian ? = ?2 J?1 · ?2) leads to the parameter value J = ?98(3) cm?1. Compared to the exchange coupling in corresponding binuclear chromium compounds with OH? bridges and identical metal-metal separation the strength of the coupling is significantly enhanced (JNH2/JOH ≈? 1.6).  相似文献   

13.
Efficient pulse sequences for measuring 1H–1H coupling constants (JHH) in strongly coupled spin systems, named selective J‐resolved‐HMQC‐1 and ‐2, have been developed. In the strongly coupled spin systems such as ‐CH2‐CHA(OH)‐CHB(OH)‐CH2‐, measurements of 3JHAHB are generally difficult owing to the complicated splitting caused by the adjacent CH2 protons. For easier and accurate measurements of 3JHAHB in such a spin system, a selective excitation pulse is incorporated into the J‐resolved HMQC pulse sequence. In the proposed methods, only two strongly coupled protons, HA and HB which are excited by a selective pulse, are observed as J‐resolved HMQC signals. The cross peaks of HA and HB appear as doublets owing to 3JHAHB along the F1 dimension in the selective J‐resolved HMQC‐1 and ‐2 experiments. The efficiency of the proposed pulse sequences has been demonstrated in application to the stereochemical studies of the complicated natural product, monazomycin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Molecular mechanisms underlying the repair of nitrosylated [Fe–S] clusters by the microbial protein YtfE remain poorly understood. The X‐ray crystal structure of YtfE, in combination with EPR, magnetic circular dichroism (MCD), UV, and 17O‐labeling electron spin echo envelope modulation measurements, show that each iron of the oxo‐bridged FeII–FeIII diiron core is coordinatively unsaturated with each iron bound to two bridging carboxylates and two terminal histidines in addition to an oxo‐bridge. Structural analysis reveals that there are two solvent‐accessible tunnels, both of which converge to the diiron center and are critical for capturing substrates. The reactivity of the reduced‐form FeII–FeII YtfE toward nitric oxide demonstrates that the prerequisite for N2O production requires the two iron sites to be nitrosylated simultaneously. Specifically, the nitrosylation of the two iron sites prior to their reductive coupling to produce N2O is cooperative. This result suggests that, in addition to any repair of iron centers (RIC) activity, YtfE acts as an NO‐trapping scavenger to promote the NO to N2O transformation under low NO flux, which precedes nitrosative stress.  相似文献   

15.
2‐Pyridylmethylamine (amp) and 8‐aminochinoline (ach) readily form the following complexes with iron halides in methanol: [(amp)2FeCl2] ( 1a ), [(amp)2FeBr2] ( 1b ), [(ach)2Fe(MeOH)2]Br2 ( 1c ), and [(amp)FeCl2(μ‐OMe)]2 ( 2 ). Methanol was chosen as a solvent because these reactions are rather complex in ether. For example, FeCl3 forms the ionic complex pair [(dme)2FeCl2] [FeCl4] ( 3 ) with 1,2‐dimethoxyethane (dme). The reaction of FeBr2 with tridentate di(2‐pyridylmethyl)amine (dpa) and tetradentate 1,2‐dipyridyl‐1,2‐diaminoethane (dpdae) yields the complexes [(dpa)2Fe]Br2·2 MeOH ( 4 ) and [(dpdae)2Fe] [FeBr4] ( 5 ), respectively. Crystallographic and magnetochemical investigations show the high‐spin configuration for the complexes 1 and 2 , whereas the short Fe‐N distances of 4 clearly indicate a low‐spin state. Compound 2 exhibits an antiferromagnetic exchange interaction with a coupling constant J = ?29.4 cm?1 (H;af = ?J S;afA·S;afB).  相似文献   

16.
A new family of five ethene‐bridged diiron(III)‐μ‐hydroxo bisporphyrins with the same core structure but different counter anions, represented by the general formula [Fe2(bisporphyrin)]OH ? X (X=counter anion), is reported herein. In these complexes, two different spin states of Fe are stabilized in a single molecular framework. Protonation of the oxo‐bridged dimer 1 by strong Brønsted acids such as HI, HBF4, HPF6, HSbF6, and HClO4 produces the μ‐hydroxo complexes with I5? ( 2 ), BF4? ( 3 ), PF6? ( 4 ), SbF6? ( 5 ), and ClO4? ( 6 ) as counter anions, respectively. The X‐ray structures of 2 and 6 have been determined, which provide a rare opportunity to investigate structural changes upon protonation. Spectroscopic characterization has revealed that the two iron(III) centers in 2 are nonequivalent with nearly high and admixed‐intermediate spins in both the solid state and solution. Moreover, the two different FeIII centers of 3 – 5 are best described as having admixed‐high and admixed‐intermediate spins with variable contributions of S=5/2 and 3/2 for each state in the solid, but two different admixed‐intermediate spins in solution. In contrast, the two FeIII centers in 6 are equivalent and are assigned as having high and intermediate spin states in the solid and solution, respectively. The X‐ray structures reveal that the Fe? O bond length increases on going from the μ‐oxo to the μ‐hydroxo complexes, and the Fe‐O(H)‐Fe unit becomes more bent, with the dihedral angle decreasing from 150.9(2)° in 1 to 142.3(3)° and 143.85(2)° in 2 and 6 , respectively. Variable‐temperature magnetic data have been subjected to a least‐squares fitting using the expressions derived from the spin Hamiltonians H=?2JS1?S2?μ?B+D[${S{{2\hfill \atop z\hfill}}}$ ?1/3S(S+1)] (for 2 , 3 , 4 , and 5 ) and H=?2JS1?S2 (for 6 ). The results show that strong antiferromagnetic coupling between the two FeIII centers in 1 is attenuated to nearly zero (?2.4 cm?1) in 2 , whereas the values are ?46, ?32.6, ?33.5, and ?34 cm?1 for 3 , 4 , 5 , and 6 , respectively.  相似文献   

17.
This paper reports a theoretical analysis of the electronic structure and magnetic properties of a ferromagnetic CuII [3×3] grid. A two‐step strategy, combining calculations on the whole grid and on binuclear fragments, has been employed to evaluate all the magnetic interactions in the grid. The calculations confirm an S=7/2 ground state, which is in accordance with the magnetisation versus field curve and the thermal dependence of the magnetic moment data. Only the first‐neighbour coupling terms present non‐negligible amplitudes, all of them in agreement with the structure and arrangement of the Cu 3d magnetic orbitals. The results indicate that the dominant interaction in the system is the antiferromagnetic coupling between the ring and the central Cu sites (J3=J4≈?31 cm?1). In the ring two different interactions can be distinguished, J1=4.6 cm?1 and J2=?0.1 cm?1, in contrast to the single J model employed in the magnetic data fit. The calculated J values have been used to determine the energy level distribution of the Heisenberg magnetic states. The effective magnetic moment versus temperature plot resulting from this ab initio energy profile is in good agreement with the experimental curve and the fitting obtained with the simplified spin model, despite the differences between these two spin models. This study underlines the role that the theoretical evaluations of the coupling constants can play on the rationalisation of the magnetic properties of these complex polynuclear systems.  相似文献   

18.
Spin-polarized Xα–SW calculations of [Fe63?S)8(PH3)6]2+ as a model of the cluster [Fe63?S)8(PEt3)6] (BPh4)2 have been performed. The highest occupied energy levels are well separated from empty levels, and up to a maximum of eight electrons can be unpaired, giving a maximum spin state with S = 4. This electronic state is consistent with the magnetic data of [Fe63?S)8(PEt3)6](BPh 4)2, which have been interpreted using the Heisenberg–Dirac–Van Vleck exchange spin Hamiltonian. The S = 4 state arises from the magnetic coupling between five low-spin (Si = 1/2) and one intermediate-spin (S = 3/2) iron(III) center. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
In the 1H NMR spectra of the 1‐vinylpyrroles with amino‐ and alkylsulfanyl groups in 5 and 2 positions, an extraordinarily large difference between resonance positions of the HA and HB terminal methylene protons of the vinyl group is discovered. Also, the one‐bond 1J(Cβ,HB) coupling constant is surprisingly greater than the 1J(Cβ,HA) coupling constant in pyrroles under investigation, while in all known cases, there was a reverse relationship between these coupling constants. These spectral anomalies are substantiated by quantum chemical calculations. The calculations show that the amine nitrogen lone pair is removed from the conjugation with the π‐system of the pyrrole ring so that it is directed toward the HB hydrogen. These factors are favorable to the emergence of the intramolecular C–HB???N hydrogen bonding in the s‐cis(N) conformation. On the other hand, the spatial proximity of the sulfur to the HB hydrogen provides an opportunity of the intramolecular C–HB???S hydrogen bonding in the s‐cis(S) conformation. Presence of the hydrogen bond critical points as well as ring critical point for corresponding chelate ring revealed by a quantum theory of atoms in molecules (QTAIM) approach confirms the existence of the weak intramolecular C–H???N and C–H???S hydrogen bonding. Therefore, an unusual high‐frequency shift of the HB signal and the increase in the 1J(Cβ,HB) coupling constant can be explained by the effects of hydrogen bonding. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Based on the bis‐triazole ligand 2, 6‐bis(1, 2,4‐triazole‐4‐yl)pyridine (L), the triazole‐iron(II) complexes [Fe(L)2(dca)2(H2O)2] · 2H2O ( 1 ) (Nadca = sodium dicyanamide), {[Fe(μ2‐L)2(H2O)2]Cl2}n ( 2 ), and {[Fe(μ2‐L)2(H2O)2](ClO4)2 · L · H2O}n ( 3 ) were isolated by solvent diffusion methods. When iron(II) salts and Nadca were used, compound 1 was isolated, which contains mononuclear Fe(L)2(dca)2(H2O)2 units. When FeCl2 or FeClO4 were used, one‐dimensional (1D) cation iron(II) chains ( 2 ) and two‐dimensional (2D) cation iron(II) networks ( 3 ) were isolated indicating anion directing structural diversity. Moreover, variable‐temperature magnetic susceptibility data of 1 – 3 were recorded in the temperature range 2–300 K. The magnetic curve of complex 2 was fitted by using the classical spin Heisenberg chain model indicating anti‐ferromagnetic interactions (J = –5.31 cm–1). Obviously complexes 1 – 3 show no detectable thermal spin crossover behaviors, the lack of spin‐crossover behavior may be correlated with FeN4O2 coordination spheres in 1 – 3 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号