首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The self‐organization of multicomponent supramolecular systems involving a variety of two‐dimensional (2 D) polygons and three‐dimensional (3 D) cages is presented. Nine self‐organizing systems, SS1 – SS9 , have been studied. Each involves the simultaneous mixing of organoplatinum acceptors and pyridyl donors of varying geometry and their selective self‐assembly into three to four specific 2 D (rectangular, triangular, and rhomboid) and/or 3 D (triangular prism and distorted and nondistorted trigonal bipyramidal) supramolecules. The formation of these discrete structures is characterized using NMR spectroscopy and electrospray ionization mass spectrometry (ESI‐MS). In all cases, the self‐organization process is directed by: 1) the geometric information encoded within the molecular subunits and 2) a thermodynamically driven dynamic self‐correction process. The result is the selective self‐assembly of multiple discrete products from a randomly formed complex. The influence of key experimental variables ‐ temperature and solvent ‐ on the self‐correction process and the fidelity of the resulting self‐organization systems is also described.  相似文献   

2.
The synthesis of a bowl‐shaped trinuclear circular titanium‐based helicate is reported. The strategy allowing access to this neutral architecture is based on a multicomponent self‐assembly approach in which the ligands involved in the process are a bis‐biphenol strand and 2,2′‐ bipyrimidine. By reacting the bis‐biphenol ligand and 2,2′‐bipyrimidine with an equimolar amount [Ti(OiPr)4], a bowl‐shaped architecture is obtained through the formation of 18 new coordination bonds. This aggregate built from three octahedral TiO4N2 nodes displays an unusually high stability in solution compared to related species. In addition, by modifying the stoichiometry of the initial components, two assemblies incorporating two titanium centers bridged by a 2,2′‐bipyrimidine ligand are obtained. The crystal structures of these species are reported.  相似文献   

3.
The C3‐symmetric chiral propylated host‐type ligands (±)‐tris(isonicotinoyl)‐tris(propyl)‐cyclotricatechylene ( L1 ) and (±)‐tris(4‐pyridyl‐4‐benzoxy)‐tris(propyl)‐cyclotricatechylene ( L2 ) self‐assemble with PdII into [Pd6L8]12+ metallo‐cages that resemble a stella octangula. The self‐assembly of the [Pd6( L1 )8]12+ cage is solvent‐dependent; broad NMR resonances and a disordered crystal structure indicate no chiral self‐sorting of the ligand enantiomers in DMSO solution, but sharp NMR resonances occur in MeCN or MeNO2. The [Pd6( L1 )8]12+ cage is observed to be less favourable in the presence of additional ligand, than is its counterpart, where L=(±)‐tris(isonicotinoyl)cyclotriguaiacylene ( L1 a ). The stoichiometry of reactant mixtures and chemical triggers can be used to control formation of mixtures of homoleptic or heteroleptic [Pd6L8]12+ metallo‐cages where L= L1 and L1 a .  相似文献   

4.
Triangular luminescent box : Self‐assembly of a new multidentate receptor with europium cations results in the formation of trinuclear discrete complexes. X‐ray crystallography shows that nine‐coordinate cations are linked by ligands to provide a triangular complex in the solid state and in solution. Despite the coordinated solvent molecules, this topologically unusual complex exhibits remarkable luminescent properties.

  相似文献   


5.
The design and synthesis of tripodal ligands 1 – 3 based upon the N‐methyl‐1,3,5‐benzenetricarboxamide platform appended with three aryl urea arms is reported. This ligand platform gives rise to highly preorganized structures and is ideally suited for binding SO42? and H2PO4? ions through multiple hydrogen‐bonding interactions. The solid‐state crystal structures of 1 – 3 with SO42? show the encapsulation of a single anion within a cage structure, whereas the crystal structure of 1 with H2PO4? showed that two anions are encapsulated. We further demonstrate that ligand 4 , based on the same platform but consisting of two bis‐urea moieties and a single ammonium moiety, also recognizes SO42? to form a self‐assembled capsule with [4:4] SO42?: 4 stoichiometry in which the anions are clustered within a cavity formed by the four ligands. This is the first example of a self‐sorting self‐assembled capsule where four tetrahedrally arranged SO42? ions are embedded within a hydrophobic cavity.  相似文献   

6.
A combination of self‐complementary hydrogen bonding and metal–ligand interactions allows stereocontrol in the self‐assembly of prochiral ligand scaffolds. A unique, non‐tetrahedral M4L6 structure is observed upon multicomponent self‐assembly of 2,7‐diaminofluorenol with 2‐formylpyridine and Fe(ClO4)2. The stereochemical outcome of the assembly is controlled by self‐complementary hydrogen bonding between both individual ligands and a suitably sized counterion as template. This hydrogen‐bonding‐mediated stereoselective metal–ligand assembly allows the controlled formation of nonsymmetric discrete cage structures from previously unexploited ligand scaffolds.  相似文献   

7.
8.
9.
On the attempted synthesis of a series of homo‐ and heterotrimetallic [2]catenanes by the self‐assembly of a 2‐(pyridin‐4‐ylmethyl)‐2,7‐diazapyrenium ligand, (ethylenediamine)palladium(II) or platinum(II) nitrate, and a dioxoaryl bis(N‐monoalkyl‐4,4′‐bipyridinium) salt as building blocks, both the one‐pot direct self‐assembly of the components and the so called “magic ring” approach fail to produce the expected trinuclear [2]catenanes under thermodynamically driven conditions. However, one of the target supramolecules is obtained by following a stepwise protocol, consisting of the threading of a dinuclear PtII metallacycle and the dioxoaryl bis(N‐monoalkyl‐4,4′‐bipyridinium) axle, followed by kinetically controlled PtII‐directed cyclization of the corresponding pseudorotaxane.  相似文献   

10.
In the self‐assembly of PdII ions and two different, but similarly shaped, ligands ( 1 and 2 ), neither random mixing nor self‐sorting of the two ligands into two unmixed structures was observed. Instead a mixed, yet sorted, Pd12( 1 )12( 2 )12 cantellated tetrahedron (and its pseudoisomer) was selectively formed, thus revealing a fine example of intramolecular self‐sorting. A case study showed that a homothetic ratio of >2 is necessary to observe cantellated tetrahedra.  相似文献   

11.
12.
Owing to their versatility and biocompatibility, peptide‐based self‐assembled structures constitute valuable targets for complex functional designs. It is now shown that artificial capsules based on β‐barrel binding motifs can be obtained by means of dynamic covalent chemistry (DCC) and self‐assembly. Short peptides (up to tetrapeptides) are reversibly attached to resorcinarene scaffolds. Peptidic capsules are thus selectively formed in either a heterochiral or a homochiral way by simultaneous and spontaneous processes, involving chiral sorting, tautomerization, diastereoselective induction of inherent chirality, and chiral self‐assembly. Self‐assembly is shown to direct the regioselectivity of reversible chemical reactions. It is also responsible for shifting the tautomeric equilibrium for one of the homochiral capsules. Two different tautomers (keto‐enamine hemisphere and enol‐imine hemisphere) are observed in this capsule, allowing the structure to adapt for self‐assembly.  相似文献   

13.
A chiral bisurea‐based superhydrogelator that is capable of forming supramolecular hydrogels at concentrations as low as 0.2 mM is reported. This soft material has been characterized by thermal studies, rheology, X‐ray diffraction analysis, transmission electron microscopy (TEM), and by various spectroscopic techniques (electronic and vibrational circular dichroism and by FTIR and Raman spectroscopy). The expression of chirality on the molecular and supramolecular levels has been studied and a clear amplification of its chirality into the achiral analogue has been observed. Furthermore, thermal analysis showed that the hydrogelation of compound 1 has a high response to temperature, which corresponds to an enthalpy‐driven self‐assembly process. These particular thermal characteristics make these materials easy to handle for soft‐application technologies.  相似文献   

14.
The reversibility of boronic acid and diol interaction makes it an ideal candidate for the design of self‐assembled molecular structures. Reversibility is required to ensure that the thermodynamically most stable structure is formed. Reversibility also ensures that any errors produced during the assembly process are not permanent.  相似文献   

15.
A facile high yield, self‐assembly process that leads to a terpyridine‐based, three‐dimensional, bis‐rhomboidal‐shaped, molecular wheel is reported. The desired coordination‐driven supramolecular wheel involves eight structurally distorted tristerpyridine (tpy) ligands possessing a 60° angle between the adjacent tpy units and twelve Zn2+ ions. The tpy ligand plays dual roles in the self‐assembly process: two are staggered at 180° to create the internal hub, while six produce the external rim. The wheel can be readily generated by mixing the tpy ligand and Zn2+ in a stoichiometric ratio of 2:3; full characterization is provided by ESI‐MS, NMR spectroscopy, and TEM imaging.  相似文献   

16.
Highly ordered supramolecular microfibers were constructed through a simple ionic self‐assembly strategy from complexes of the N‐tetradecyl‐N‐methylpyrrolidinium bromide (C14MPB) surface‐active ionic liquid and the small methyl orange (MO) dye molecule, with the aid of patent blue VF sodium salt. By using scanning electron microscopy and polarized optical microscopy, the width of these self‐assembled microfibers is observed to be about 1 to 5 μm and their length is from tens of micrometers to almost a millimeter. The 1H NMR spectra of the microfibers indicates that the supramolecular complexes are composed of C14MPB and MO in equal molar ratio. The electrostatic, hydrophobic, and π–π stacking interactions are regarded as the main driving forces for the formation of microfibers. Furthermore, through characterization by using confocal fluorescence microscopy, the microfibers were observed to show strong fluorescent properties and may find potential applications in many fields.  相似文献   

17.
18.
A 1,1′‐binaphthyl‐based bis(pyridine) ligand ( 1 ) was prepared in racemic and enantiomerically pure form to study the formation of [Pd2( 1 )4] complexes upon coordination to palladium(II) ions with regard to the degree of chiral self‐sorting. The self‐assembly process proceeds in a highly selective narcissistic self‐recognition manner to give only homochiral supramolecular M2L4 cages, which were characterized by ESI‐MS, NMR, and electronic circular dichroism (ECD) spectroscopy, as well as by single‐crystal XRD analysis.  相似文献   

19.
20.
The self‐assembling abilities of several pseudopeptidic macrocycles have been thoroughly studied both in the solid (SEM, TEM, FTIR) and in solution (NMR, UV, CD, FTIR) states. Detailed microscopy revealed large differences in the morphology of the self‐assembling micro/nanostructures depending on the macrocyclic chemical structures. Self‐assembly was triggered by the presence of additional methylene groups or by changing from para to meta geometry of the aromatic phenylene backbone moiety. More interestingly, the nature of the side chain also plays a fundamental role in some of the obtained nanostructures, thus producing structures from long fibers to hollow spheres. These nanostructures were obtained in different solvents and on different surfaces, thus implying that the chemical information for the self‐assembly is contained in the molecular structure. Dilution NMR studies (chemical shift and self‐diffusion rates) suggest the formation of incipient aggregates in solution by a combination of hydrogen‐bonding and π–π interactions, thus implicating amide and aryl groups, respectively. Electronic spectroscopy further supports the π–π interactions because the compounds that lead to fibers show large hypochromic shifts in the UV spectra. Moreover, the fiber‐forming macrocycles also showed a more intense CD signature. The hydrogen‐bonding interactions within the nanostructures were also characterized by attenuated total‐reflectance FTIR spectroscopy, which allowed us to monitor the complete transition from the solution to the dried nanostructure. Overall, we concluded that the self‐assembly of this family of pseudopeptidic macrocycles is dictated by a synergic action of hydrogen‐bonding and π–π interactions. The feasibility and geometrical disposition of these interactions finally render a hierarchical organization, which has been rationalized with a proposal of a model. The understanding of the process at the molecular level has allowed us to prepare hybrid soft materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号