首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Imine macrocycle M1 was successfully used in conjunction with CuBr as a catalytic system in the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA). The role of the reaction conditions was clearly observed. Such reaction conditions were found to be the molar ratios of the reactants, the chosen initiating systems, and some additional ambient conditions (e.g. temperature, solvent). MMA homopolymers were successively prepared via ATRP by using benzhydrylbromide, diethylmethylbromomalonate initiating systems under the appropriate reaction conditions. Definite well‐known structures of the formed polymers were unambiguously identified with 1H NMR.  相似文献   

2.
Oxidative polymerization of the monolignols (sinapyl alcohol [SA] and coniferyl alcohol [CA]) has been performed using enzyme-based biocatalysts. The oxidation of SA, CA, or an SA/CA mixture has been carried out using peroxidase enzyme–assisted H2O2/t-BHP (oxidation reagent). The reaction provided radicals with high reactivity, in turn yielding a variety of polymeric structures. The efficiency of the oxidative polymerization system has been evaluated in terms of substrate conversion. Also, the polymeric products were characterized with the gel permeation chromatography technique (GPC). Accordingly, optimum experimental parameters have been set up (e.g. temperature, type of peroxidase enzyme, and oxidation reagent). Under optimum conditions, a maximum of 90% of the SA was transformed to polymeric products with MW = 3188 Da, Mn = 1115 Da, and PD = 2.8.  相似文献   

3.
A series of trialkylsilyl esters were deprotected or transesterificated into their corresponding carboxylic acids or methyl esters under a catalytic amount of CBr4 in alcohol reaction system. This method enables to desilylate secondary sp3-carbon, sp2-carbon, sp-carbon and aryl tethered trialkylsilyl esters to carboxylic acids, whereas primary sp3-carbon tethered trialkylsilyl esters were further converted into their methyl esters under CBr4/MeOH reaction conditions. The highly chemoselective deprotections can be modulated and achieved by the introduced protecting trialkylsilyl groups and the used alcohols such as MeOH and EtOH under this photochemically-induced reaction conditions.  相似文献   

4.
The silene molecule (H2SiCH2; X1A1) has been synthesized under single collision conditions via the bimolecular gas phase reaction of ground state methylidyne radicals (CH) with silane (SiH4). Exploiting crossed molecular beams experiments augmented by high-level electronic structure calculations, the elementary reaction commenced on the doublet surface through a barrierless insertion of the methylidyne radical into a silicon-hydrogen bond forming the silylmethyl (CH2SiH3; X2A′) complex followed by hydrogen migration to the methylsilyl radical (SiH2CH3; X2A′). Both silylmethyl and methylsilyl intermediates undergo unimolecular hydrogen loss to silene (H2SiCH2; X1A1). The exploration of the elementary reaction of methylidyne with silane delivers a unique view at the widely uncharted reaction dynamics and isomerization processes of the carbon–silicon system in the gas phase, which are noticeably different from those of the isovalent carbon system thus contributing to our knowledge on carbon silicon bond couplings at the molecular level.  相似文献   

5.
The previously unknown silylgermylidyne radical (H3SiGe; X2A′′) was prepared via the bimolecular gas phase reaction of ground state silylidyne radicals (SiH; X2Π) with germane (GeH4; X1A1) under single collision conditions in crossed molecular beams experiments. This reaction begins with the formation of a van der Waals complex followed by insertion of silylidyne into a germanium-hydrogen bond forming the germylsilyl radical (H3GeSiH2). A hydrogen migration isomerizes this intermediate to the silylgermyl radical (H2GeSiH3), which undergoes a hydrogen shift to an exotic, hydrogen-bridged germylidynesilane intermediate (H3Si(μ-H)GeH); this species emits molecular hydrogen forming the silylgermylidyne radical (H3SiGe). Our study offers a remarkable glance at the complex reaction dynamics and inherent isomerization processes of the silicon-germanium system, which are quite distinct from those of the isovalent hydrocarbon system (ethyl radical; C2H5) eventually affording detailed insights into an exotic chemistry and intriguing chemical bonding of silicon-germanium species at the microscopic level exploiting crossed molecular beams.  相似文献   

6.
The results obtained from CASSCF‐MRMP2 calculations are used to rationalize the singlet complexes detected under matrix‐isolation conditions for the reactions of laser‐ablated Zr(3F) atoms with the CH3F and CH3CN molecules, without invoking intersystem crossings between electronic states with different multiplicities. The reaction Zr(3F) + CH3F evolves to the radical products ZrF· + ·CH3. This radical asymptote is degenerate to that emerging from the singlet channel of the reactants Zr(1D) + CH3F because they both exhibit the same electronic configuration in the metal fragment. Hence, the caged radicals obtained under cryogenic‐matrix conditions can recombine through triplet and singlet paths. The recombination of the radical species along the low‐multiplicity channel produces the inserted structures H3C? Zr? F and H2C?ZrHF experimentally detected. For the Zr(3F) + CH3CN reaction, a similar two‐step reaction scheme involving the radical fragments ZrNC· + ·CH3 explains the presence of the singlet complexes H3C? Zr? NC and H2C?Zr(H)NC revealed in the IR‐matrix spectra upon UV irradiation. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
Pinoresinol structures, featuring a β‐β′‐linkage between lignin monomer units, are important in softwood lignins and in dicots and monocots, particularly those that are downregulated in syringyl‐specific genes. Although readily detected by NMR spectroscopy, pinoresinol structures largely escaped detection by β‐ether‐cleaving degradation analyses presumably due to the presence of the linkages at the 5 positions, in 5‐5′‐ or 5‐O‐4′‐structures. In this study, which is aimed at helping better understand 5‐linked pinoresinol structures by providing the required data for NMR characterization, new lignin model compounds were synthesized through biomimetic peroxidase‐mediated oxidative coupling reactions between pre‐formed (free‐phenolic) coniferyl alcohol 5‐5′‐ or 5‐O‐4′‐linked dimers and a coniferyl alcohol monomer. It was found that such dimers containing free‐phenolic coniferyl alcohol moieties can cross‐couple with the coniferyl alcohol producing pinoresinol‐containing trimers (and higher oligomers) in addition to other homo‐ and cross‐coupled products. Eight new lignin model compounds were obtained and characterized by NMR spectroscopy, and one tentatively identified cross‐coupled β‐O‐4′‐product was formed from a coniferyl alcohol 5‐O‐4′‐linked dimer. It was demonstrated that the 5‐5′‐ and 5‐O‐4′‐linked pinoresinol structures could be readily differentiated by using heteronuclear multiple‐bond correlation (HMBC) NMR spectroscopy. With appropriate modification (etherification or acetylation) to the newly obtained model compounds, it would be possible to identify the 5‐5′‐ or 5‐O‐4′‐linked pinoresinol structures in softwood lignins by 2D HMBC NMR spectroscopic methods. Identification of the cross‐coupled dibenzodioxocin from a coniferyl alcohol 5‐5′‐linked moiety suggested that thioacidolysis or derivatization followed by reductive cleavage (DFRC) could be used to detect and identify whether the coniferyl alcohol itself undergoes 5‐5′‐cross‐linking during lignification.  相似文献   

8.
Colon M  Hidalgo M  Iglesias M 《Talanta》2011,85(4):1941-1947
The determination of arsenic by inductively coupled plasma mass spectrometry (ICP-MS) in natural waters with high sodium and chloride content has been investigated. The instrument used is equipped with an octopole collision/reaction cell to overcome spectroscopic interferences. Thus, the optimization of collision/reaction gas flow rates is required when using a pressurized cell. A mixture of 2.9 mL min−1 of H2 and 0.5 mL min−1 of He has been found to be suitable for the removal of 40Ar35Cl+ interference.The effect of the introduction of small amounts of alcohol has also been studied in this work under both vented and pressurized cell conditions. It has been observed that the presence of 4% (v/v) of ethanol or methanol results in an increase in arsenic sensitivity. Moreover, under vented cell conditions the addition of alcohol also decreases the formation of polyatomic interference. However, this decrease is not observed under pressurized cell conditions.Different elements have been studied as possible internal standards for arsenic determination in presence of high amounts of sodium. Good results have been obtained for rhodium and yttrium under both vented and pressurized cell conditions. Although the presence of alcohol in the sample matrix also affects their behaviour, rhodium and yttrium are still the most suitable elements to correct for these matrix effects.Different experimental conditions have been compared for arsenic determination in spiked, certified and natural waters with high sodium and chloride content. The best results have been obtained under pressurized cell conditions, in the presence of ethanol and using rhodium as internal standard.  相似文献   

9.
(14C-lignin) grass lignocellulose was prepared from wheat seedlings injected with (14C-uniform) phenylalanine. Seedlings were injected 2 wk after germination and grown for 3–4 wk in a diurnal light cycle before harvesting. The plant material was ground in liquid N2, extracted with hot water, benzene-ethanol, and ethanol, and treated with protease. Treatment of the lignocellulose with acid, alkali, and cellulase solubilized14C, which was analyzed by HPLC and TLC. Reverse-phase HPLC demonstrated that14C-ferulic and coumaric acid were bound primarily to carbohydrate and lignin, respectively. Gel permeation chromatography by HPLC of14C solubilized by treatment with 1M NaOH confirmed that the majority of the14C was incorporated into high molecular weight material. No14C was detected in either hexoses or pentoses obtained from the lignocellulose and only a minor amount was present as14C-phenylalanine. These studies show that (14C-lignin) grass lignocelluloses must be carefully characterized before being used as defined substrates for biodegradation studies. Coniferyl alcohol was synthesized by a route derived from those of Nakamura et al. (1974) and Nakamura and Higuchi (1976). DHP was then prepared by a modification of the method of Brunow and Wallin (1981) in which solutions of coniferyl alcohol and hydrogen peroxide were added alternately by a computer controlled HPLC system so that the coniferyl alcohol concentration was maintained below 1 mM throughout the synthesis. The DHP obtained was characterized by HPLC gel permeation chromatography and by NMR. The results of these analyses will be discussed.  相似文献   

10.
Visible light irradiation of a reaction mixture containing dihydroxy coordinated tetraphenylporphyrinatotin(IV), cyclohexene and potassium hexachloroplatinate induced oxygenation of the cyclohexene under degassed conditions. In the reaction system, a water molecule served as the oxygen donor. Cyclohex-2-enol, 1,2-dichlorocyclohexane and 2-chlorocyclohexanol were the major oxidation products and the quantum yield was around 0.1. An experiment using H2 18O revealed that an 18O atom was quantitatively incorporated into the oxygenated products. The reaction was initially induced by an electron transfer from an excited triplet porphyrin to potassium hexachloroplatinate producing a cation radical of the porphyrin. Metal-oxo type complexes formed through deprotonation of the hydroxy group of the porphyrin cation radical were key reactive intermediates reacting with cyclohexene. Two kinds of the metal-oxo type complex reactive intermediate were kinetically demonstrated to be involved in the reaction system, producing different oxidation products from cyclohexene.  相似文献   

11.
Thanks to the superior redox potential of platinum(II) complex compared with that of Ru(bpy)32+ in the excited state, an efficient and selective visible‐light‐induced CDC reaction has been developed by using a catalytic amount (0.25 %) of 1 . With the aid of FeSO4 (2 equiv), the corresponding amide could not be detected under visible‐light irradiation (λ=450 nm), but the desired cross‐coupling product was exclusively obtained under ambient air conditions. A spectroscopic study and product analysis revealed that the CDC reaction is initiated by photoinduced electron‐transfer from N‐phenyltetrahydroisoquinoline to the complex. An EPR (electron paramagnetic resonance) experiment provides direct evidence on the generation of superoxide radical anion (O2? . ) rather than singlet oxygen (1O2) under irradiation of the reaction system, in contrast to that reported in the literature. Combined, the photoinduced electron‐transfer and subsequent formation of superoxide radical anion (O2? . ) results in a clean and facile transformation.  相似文献   

12.
The radiation-induced heterogeneous polymerization of ethylene in ethyl alcohol was carried out in a reactor with a capacity of 100 ml under the following reaction conditions: temperature, 24 ± 3°C; pressure, 200–400 kg/cm2; amount of ethyl alcohol, 30–70 ml; dose rate, 3.7 × 104?1.05 × 105 rad hr. The effects of amount of ethyl alcohol, pressure, and dose rate on the rate of polymerization at the steady state, the amount of polymerized monomer, the molecular weight of polymer, and the number of polymer chains were studied compared with the results obtained in the polymerization in tert-butyl alcohol. It was found that there is an acceleration period in the early stage of reaction followed by a steady state. The rate of polymerization was maximum when about 50 ml of ethyl alcohol was used. The molecular weight of polymer increased with a decrease in the amount of ethyl alcohol. The dependences of pressure (p) and dose rate (I) on the rate of polymerization at steady state (Rs) and the molecular weight of polymer (M?n) were expressed as follows; Rsp0.74, M?np0.3?0.4, Rs ∝ I0.9 and M?nI?0.1 ?0.0. The results were analyzed by a kinetic treatment based on a reaction mechanism containing both first-and second-order terminations. The rate constant of first-order termination by radical occlusion was considerably larger than that in the polymerization in tert-butyl alcohol, because the affinity of ethyl alcohol for polyethylene is smaller than that of tert-butyl alcohol. It was found that chain transfer to ethyl alcohol takes place easily and the G value of ethyl alcohol for initiation is larger than 1.5.  相似文献   

13.
The chlorine dioxide radical (ClO2.) was found to act as an efficient oxidizing agent in the aerobic oxygenation of methane to methanol and formic acid under photoirradiation. Photochemical oxygenation of methane occurred in a two‐phase system comprising perfluorohexane and water under ambient conditions (298 K, 1 atm). The yields of methanol and formic acid were 14 and 85 %, respectively, with a methane conversion of 99 % without formation of the further oxygenated products such as CO2 and CO. Ethane was also photochemically converted into ethanol (19 %) and acetic acid (80 %). The methane oxygenation is initiated by the photochemical Cl?O bond cleavage of ClO2. to generate Cl. and O2. The produced Cl. reacts with CH4 to form a methyl radical (CH3.). Finally, the oxygenated products such as methanol and formic acid were given by the radical chain reaction. A fluorous solvent plays an important role of inhibiting the deactivation of reactive radical species such as Cl. and CH3..  相似文献   

14.
The release of H2O2 by plant cell suspensions elicited with crude hyphal wall preparations has been studied in a complex of plant genotypes (two cvs ofCapsicum annuum and one of C.frutescens) and fungus species(Phytophthora capsici, Ph. parasitica andVerticillium dahliae), representing several combinations of compatibility and both host and nonhost resistance. Production of H2O2 was revealed as peroxidasedependent and catalase-inhibited fluorescence quenching of an extracellular probe (Pyranine). All the plant genotypes responded to at least one elicitor, but the cell sensitivity showed a great age-dependent variability. Riboflavine and Mn2+ added in the incubation medium acted to some extent as primers for activated cell response, as well as a high Na+ concentration. Cell rest condition, however, was not removed. Some quantitative features of responsive plant/elicitor combinations (dose-response relation and lasting time) have been recorded. The complex PO/H2O2 of elicited cells could perform detectable lignin-like polymerization of an exogenous natural substrate (coniferyl alcohol). The time-course of pyranine oxidation and lignin-like polymer formation could be recorded by adopting a fluorimetric procedure that allowed sequential observations on the same cell sample. In one instance, the cell reaction seemed associated with thein planta host/parasite incompatibility.  相似文献   

15.
We describe a unique catalytic system with an efficient coupling of Ti- and Cr-catalysis in a reaction network that allows the use of [BH4] as stoichiometric hydrogen atom and electron donor in catalytic radical chemistry. The key feature is a relay hydrogen atom transfer from [BH4] to Cr generating the active catalysts under mild conditions. This enables epoxide reductions, regiodivergent epoxide opening and radical cyclizations that are not possible with cooperative catalysis with radicals or by epoxide reductions via Meinwald rearrangement and ensuing carbonyl reduction. No typical SN2-type reactivity of [BH4] salts is observed.  相似文献   

16.
Monoallyl compounds are not readily homopolymerized by a conventional free‐radical mechanism. However, the polymerization of allylbiguanide hydrochloride was reported to proceed in a concentrated solution of hydrochloric or phosphoric acid in the presence of a radical initiator. Here we have studied the polymerization of allyl alcohol by a radical initiator in the presence of a Lewis acid (ZnCl2, CuCl2 or MgCl2) in an organic solvent (toluene, hexane, methanol or isopropanol). Reactions were performed either at room temperature or 50°C under an atmosphere of nitrogen or in a sealed tube. The same polymerization was also carried out in water and in a concentrated acid solution. The polymer product was purified by dialysis in 0.2–3.7% yield and confirmed by elemental analysis, infrared spectroscopy and 1H NMR. The molecular weight range of poly(allyl alcohol) was 10,000–35,000. The polymerization of allyl acetate by the radical initiator under the above conditions gave poly(allyl acetate) with the molecular weight range of 10,000–13,800 by multi‐angle laser light scattering. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
The reactions of oxide radical anions (O?.) with benzene and toluene under atmospheric pressure (APCI) and conventional chemical ionization (CI) conditions were compared. Hydrogen radical (H?) displacement by oxygen, yielding [M ? H + O]?, was observed in both the APCI and the CI source. However, the product, [M ? 2H]?., derived from dihydrogen radical ion (H2 +.) transfer which was observed in the CI spectra, was consistently absent under APCI conditions. This behavior is rationalized in terms of the higher pressures and chemical equilibrium associated with the APCI source. In addition to the formation of the a priori expected phenoxide isomers, the reaction of O?. with toluene to yield the [M ? H + O]? product generates a benzyloxide anion. Tandem mass spectrometry data from collision-induced dissociation and isotopic labeling with deuterium support a reaction mechanism initiated by α hydrogen abstraction for both the H. and the H2 +. transfer pathways.  相似文献   

18.
Acetone is catalytically reduced to isopropyl alcohol by carbon monoxide and water in the presence of iron carbonyls and triethylamine at 100°C and 100 bar. Use of NaOH in place of triethylamine gives a much less efficient catalyst system. The Et3NH·HFe(CO)4 system also catalyses the reduction of n-butyraldehyde to n-butyl alcohol at room temperature in a fast stoichiometric reaction, whereas NaHFe(CO)4 is inactive under the same conditions. The Et3NH+ cation is necessary for the transfer of a proton to the carbonyl group, while the HFe(CO)4? anion carries out nucleophilic attack on carbonyl group and supplies the hydride ion.  相似文献   

19.
The Wharton rearrangement of 2,3-epoxytricyclo[7.1.1.02,7]undecan-3-one, a sterically hindered system, which should have led to an allyl alcohol with the OH group at a bridgehead, gave instead the allylically rearranged alcohol. The desired hydroxy compound was prepared by the Barton modification of the Wharton rearrangement: borohydride reduction to the epoxy alcohols, reaction with N, N′-thiocarbonylbisimidazole, and treatment with Bu3SnH. The bridgehead alcohol (and other 2-oxygenated tricyclo[7.1.1.02,7]undecanes) readily rearranged under acidic or thermal conditions.  相似文献   

20.
Very low pressure photolysis (VLPØ) of chlorine nitrate was performed in a quartz Knudsen cell. The light source was a 2500 W high-pressure xenon lamp, and a modulated molecular-beam mass spectrometer was used to monitor the concentration of ClONO2 and photolysis products. Because of the low pressures used (? 10?3 torr) and the short residence time in the cell (≈1 s), secondary reactions were unimportant and the primary products could be directly identified. The primary photolysis products (λ ≈ 2700 Å) are atomic chlorine and NO3 free radical. Chlorine atoms were identified both by the appearance of Cl2 (wall recombination product; the walls were not poisoned) and by HCl produced when C2H6 was added to the cell. Nitrate free radical was directly identified as a mass peak at m/e = 62, as well as by chemical titration with nitric oxide: NO3 + NO → 2NO2. It was verified by direct tests that the peak at m/e = 62 did not arise from possible HNO3 contamination or from N2O5, a possible secondary product. This titration reaction was used to measure quantitatively a lower limit to the primary quantum yield, φ ? 0.5 ± 0.3. This represents a lower limit because of the unknown extent of the secondary photolysis of NO3 under our conditions. We believe this to be the first observation using mass spectrometry of the NO3 free radical. The quantum yield for atomic chlorine is φ = 1.0 ± 0.2. N2O was used to test for O(1D) according to the reaction, O(1D) + N2O → products; none was observed. Triplet oxygen, O(3P) was observed to the extent of ≈ 10% by the reaction O(3P) + NO2 → NO + O2, but this yield can also be due to the photolysis of NO3 free radical produced in the primary step. We conclude that the predominant reaction pathway is
.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号