首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This account is a review on the synthesis and transition‐metal coordination chemistry of N‐heterocyclic silylenes (NHSi’s) over the last 20 years till the present time (2012). Recently, fascinating and novel synthetic methods have been developed to access transition‐metal–NHSi complexes as an emerging class of compounds with a wealth of intriguing reactivity patterns. The striking influence of coordinating NHSi’s to transition‐metal complex fragments affording different reactivities to the “free” NHSi is a connecting theme (“leitmotif”) throughout the review, and highlights the potential of these compounds which lie at the interface of contemporary main‐group and classical organometallic chemistry towards new molecular catalysts for small‐molecule activation.  相似文献   

2.
The room‐temperature stable phosphinonitrene 1 undergoes a thermal rearrangement into heterocycle 2 through a process involving a nitrene insertion into a CH bond. In the presence of acetonitrile, a nitrene–acetonitrile adduct has been isolated; then it first rearranges into a ketenimine and subsequently into a rare example of diazaphosphete. Compound 1 also splits water, carbon dioxide, carbon disulfide, and elemental sulfur, although it reacts with white phosphorus, leading to a P5N cluster formally resulting from the insertion of the PN moiety into a P?P edge of the P4 tetrahedron.  相似文献   

3.
The reaction of the NHC–disilicon(0) complex [(IAr)Si=Si(IAr)] ( 1 , IAr=:C{N(Ar)C(H)}2, Ar=2,6‐i Pr2C6H3) with two equiv of elemental Te in toluene at room temperature for three days afforded a mixture of the first dimeric NHC–silicon monotelluride [(IAr)Si=Te]2 ( 2 ) and its isomeric complex [(IAr)Si(μ‐Te)Si(IAr)=Te] ( 3 ). When the same reaction was performed for ten days, only 3 was isolated from the reaction mixture. Compound 1 reacted with four equiv of elemental Te in toluene for four weeks, which proceeded through the formation of 2 , 3 and the NHC–disilicon tritelluride complex [{(IAr)Si(=Te)}2Te] ( 5‐Te ), to form the dimeric NHC–silicon ditelluride [(IAr)Si(=Te)(μ‐Te)]2 ( 4 ). The reactions are in line with theoretical mechanistic studies for the formation of 4 . Compound 3 reacted with one equiv of elemental sulfur in toluene to form the first NHC–disilicon sulfur ditelluride complex [{(IAr)Si(=Te)}2S] ( 5‐S ).  相似文献   

4.
The reactivity of the phenyl substituent of 4‐phenylthiazoles in Ru‐catalyzed direct arylation was studied. 4‐Phenylthiazole was found to be unreactive; whereas, the introduction of an aryl unit at C5‐position of 4‐phenylthiazole enhances its reactivity, allowing the selective mono‐arylation of the phenyl unit of 4‐phenylthiazoles in moderate to high yields using 5 mol% of [Ru(p‐cymene)Cl2]2 catalyst precursor associated to KOPiv as base. These results reveal that the conformation and electronic properties of 4‐phenylthiazoles are crucial to allow the formation of suitable intermediates in the course of the catalytic cycle. The reaction tolerated both electron‐rich and electron‐poor aryl bromides allowing the straightforward tuning of the electronic properties of the arylated 2‐methyl‐4‐phenyl‐5‐arylthiazoles.  相似文献   

5.
Lactamomethylsilanes of γ‐butyrolactam, δ‐valerolactam, ε‐caprolactam, and 1‐isoindolinone (phthalimidine) with up to three methyl moieties were synthesized according to the chemical formula MexSiLac(4–x) (x = 0, 1, 2, and 3). Using the lactams as starting materials four synthetic routes were tested: salt elimination, transsilylation, transamination, and metallation of the lactames followed by reaction with methylchlorosilanes. All products were analyzed by NMR (1H, 13C and 29Si) and RAMAN spectroscopy. Selected solid products were crystallized and the molecular structure was determined by single‐crystal X‐ray diffraction. The reactivity of the lactamomethylsilanes towards phenylisocyanate and CO2 was studied.  相似文献   

6.
7.
The activation of yellow arsenic is possible with the silylene [PhC(NtBu)2SiN(SiMe3)2] ( 1 ) and the disilene [(Me3Si)2N(η1-Me5C5)Si=Si(η1-Me5C5)N(SiMe3)2] ( 3 ). The reaction of As4 with 1 leads to the unprecedented As10 cage compound [(LSiN(SiMe3)2)3As10] ( 2 ; L=PhC(NtBu)2) with an As7 nortricyclane core stabilized by arsasilene moieties containing silicon(II)bis(trimethylsilyl)amide substituents. In contrast, the compound [Cp*{(SiMe3)2N}SiAs]2 ( 4 ) containing a butterfly-like diarsadisilabicyclo[1.1.0]butane unit is formed by the reaction of As4 with the disilene 3 . Both compounds were characterized by single-crystal X-ray diffraction analysis, NMR spectroscopy, and mass spectrometry. The reaction outcomes demonstrate the different reaction behavior of yellow arsenic (As4) compared to white phosphorus (P4) in the reactions with the corresponding silylenes and disilenes.  相似文献   

8.
9.
Pyridopyrimidine reacted with aromatic aldehydes afforded the arylhydrazone 2a,b which could be cyclized into the pyrido[2,3‐d][1,2,4]triazolo[4,3‐a]pyrimidine 3a,b , with formic acid, and carbon disulphide to give pyrido[2,3‐d][1,2,4]traizolo[4,3‐a]pyrimidine 4, 5. Reaction of 1 with nitrous acid afforded tetrazolo[1,5‐a]pyrido[2,3‐d]pyrimidine 6 , which was reduced by zinc dust to give 2‐amino‐pyrido‐[2,3‐d]pyrimidine 7. Finally the reaction of 2‐hydrazino 1 with D‐xylose or D‐glucose afforded the acyclic N‐nucleoside 8, 11 which were converted into tetra/penta O‐acetate acyclic C‐nucleoside 9, 12 in acetic anhydride/pyridine. De‐acetylation of compounds 9, 12 afforded C‐nucleosides 10, 13.  相似文献   

10.
Tao He  Min Wang  Pinhua Li  Lei Wang 《中国化学》2012,30(4):979-984
A highly efficient method for the synthesis of unsymmetrical multi‐substituted 1,2,3‐triazoles via a direct Pd‐NHC system catalyzed C(5)‐arylation of 1,4‐disubstituted triazoles, which are readily accessible via "click" chemistry has been developed. It is important to note that C? H bond functionalizations of 1,2,3‐triazoles with a variety of differently substituted aryl iodides and bromides as electrophiles can be conveniently achieved through this catalytic system at significantly milder reaction temperatures of 100°C under air.  相似文献   

11.
Hydrophosphination of CO2 with 1,3,2‐Diazaphospholene (NHP‐H; 1 ) afforded phosphorus formate (NHP‐OCOH; 2 ) through the formation of a bond between the electrophilic phosphorus atom in 1 and the oxygen atom from CO2, along with hydride transfer to the carbon atom of CO2. Transfer of the formate from 2 to Ph2SiH2 produced Ph2Si(OCHO)2 ( 3 ) in a reaction that could be carried out in a catalytic manner by using 5 mol % of 1 . These elementary reactions were applied to the metal‐free catalytic N‐formylation of amine derivatives with CO2 in one pot under ambient conditions.  相似文献   

12.
13.
14.
15.
16.
A C? H silylation of pyridines that seemingly proceeds through electrophilic aromatic substitution (SEAr) is reported. Reactions of 2‐ and 3‐substituted pyridines with hydrosilanes in the presence of a catalyst that splits the Si? H bond into a hydride and a silicon electrophile yield the corresponding 5‐silylated pyridines. This formal silylation of an aromatic C? H bond is the result of a three‐step sequence, consisting of a pyridine hydrosilylation, a dehydrogenative C? H silylation of the intermediate enamine, and a 1,4‐dihydropyridine retro‐hydrosilylation. The key intermediates were detected by 1H NMR spectroscopy and prepared through the individual steps. This complex interplay of electrophilic silylation, hydride transfer, and proton abstraction is promoted by a single catalyst.  相似文献   

17.
18.
An efficient two‐step synthesis of the first NHC‐stabilized disilavinylidene (Z)‐(SIdipp)SiSi(Br)Tbb ( 2 ; SIdipp=C[N(C6H3‐2,6‐iPr2)CH2]2, Tbb=C6H2‐2,6‐[CH(SiMe3)2]2‐4‐tBu, NHC=N‐heterocyclic carbene) is reported. The first step of the procedure involved a 2:1 reaction of SiBr2(SIdipp) with the 1,2‐dibromodisilene (E)‐Tbb(Br)SiSi(Br)Tbb at 100 °C, which afforded selectively an unprecedented NHC‐stabilized bromo(silyl)silylene, namely SiBr(SiBr2Tbb)(SIdipp) ( 1 ). Alternatively, compound 1 could be obtained from the 2:1 reaction of SiBr2(SIdipp) with LiTbb at low temperature. 1 was then selectively reduced with C8K to give the NHC‐stabilized disilavinylidene 2 . Both low‐valent silicon compounds were comprehensively characterized by X‐ray diffraction analysis, multinuclear NMR spectroscopy, and elemental analyses. Additionally, the electronic structure of 2 was studied by various quantum‐chemical methods.  相似文献   

19.
20.
Modifying the β‐diketimine ligand LH 1 (LH=[ArN?C(Me)? CH?C(Me)? NHAr], Ar=2,6‐iPr2C6H3) through replacement of the proton in 3‐position by a benzyl group (Bz) leads to the new BzLH ligand 2, which could be isolated in 77 % yield. According to 1H NMR spectroscopy, 2 is a mixture of the bis(imino) form [(ArN?C(Me)]2CH(Bz) 2a and its tautomer [ArN?C(Me)? C(Bz)?C(Me)NHAr] 2b. Nevertheless, lithiation of the mixture of 2a and 2b affords solely the N‐lithiated β‐diketiminate [ArN?C(Me)? C(Bz)?C(Me)? NLiAr], BzLLi 3. The latter reacts readily with GeCl2?dioxane to form the chlorogermylene BzLGeCl 4, which serves as a precursor for a new zwitterionic germylene by dehydrochlorination with LiN(SiMe3)2. This reaction leads to the zwitterionic germylene BzL′Ge: 5 (BzL′=ArNC(?CH2)C(Bz)?C(Me)NAr) which could be isolated in 83 % yield. The benzyl group has a distinct influence on the reactivity of zwitterionic 5 in comparison to its benzyl‐free analogue, as shown by the reaction of 5 with phenylacetylene, which yields solely the 1,4‐addition product 6, that is, the alkynyl germylene BzLGeCCPh. Compounds 2–8 have been fully characterized by multinuclear NMR spectroscopy, mass spectrometry, elemental analyses, and single‐crystal X‐ray diffraction analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号