首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intramolecular excited triplet state interactions in diastereomeric compounds composed of a benzophenone chromophore (ketoprofen) and various hydrogen donor moieties (tetrahydrofuran, isopropylbenzene) have been investigated by laser flash photolysis. The rate constants for hydrogen abstraction by excited triplet benzophenone are in the order of 10(4)-10(5) s(-1), with the highest reactivity for the tetrahydrofuran residue. A remarkable diastereodifferentiation, expressed in the triplet lifetimes of the carbonyl chromophore (e.g., 1.6 versus 2.7 micros), has been found for these compounds. With an alkylaromatic moiety as donor, related effects have been observed, albeit strongly dependent on the length of the spacer. The reactivity trend for the initial hydrogen transfer step is paralleled by the quantum yields of the overall photoreaction. The biradicals, formed via remote hydrogen abstraction, undergo intramolecular recombination to macrocyclic ring systems. The new photoproducts have been isolated and characterized by NMR spectroscopy. The stereochemistry of the macrocycles, which contain up to four asymmetric carbons, has been unambiguously assigned on the basis of single-crystal structures and/or NOE effects. Interestingly, a highly regio- and stereoselective macrocyclization has been found for the ketoprofen-tetrahydrofuran conjugates, where hydrogen abstraction from the less substituted carbon is exclusive; cisoid ring junction is always preferred over the transoid junction. The photoreaction is less regioselective for compounds with an isopropylbenzene residue. The reactivity and selectivity trends have been rationalized by DFT (B3LYP/6-31G*) calculations.  相似文献   

2.
Molecular dynamics simulations and quantum mechanics/molecular mechanics calculations were performed on the in silico Leu597Ala/Ile663Ala double mutant of rabbit ALOX15 (12/15 lipoxygenase). The computational results suggested that subtle steric hindrance by the conserved Leu597 and C‐terminal Ile663 residues disturbed H10 abstractions in wildtype ALOX15 (which abstracts H13), but if these two bulky residues were mutated to smaller ones, H10 abstraction was no longer impeded and the regioselectivity of the initial H‐abstraction step was changed. However, site‐directed mutagenesis with HPLC analysis of the products of the whole oxidation process showed that the regioselectivity of the hydroperoxidation was not altered. This disagreement may be explained by the conformational reorganization of the system needed to rotate the ?OO. group from an antarafacial to a suprafacial arrangement prior to back‐hydrogen transfer. After H10 abstraction and O2 insertion, the evolution of the peroxy radical at C12 was sterically impeded, whereas peroxyl group rotation at C15 (after H13 abstraction) could easily evolve to a suprafacial arrangement, which thus led to the final product. For this reason, the global regiospecificity was not affected in the mutant. These findings exemplify that the regioselectivity of initial hydrogen abstraction and the regioselectivity of the final product do not necessarily coincide (in fact, they can be opposite) for the hydroperoxidation of arachidonic acid catalyzed by a lipoxygenase.  相似文献   

3.
The uranyl dication shows photocatalytic activity towards C(sp3)?H bonds of aliphatic compounds, but not towards those of alkylbenzenes or cyclic ketones. Theoretical insights into the corresponding mechanisms are still limited. Multi‐configurational ab initio calculations including relativistic effects reveal the inherent electron‐transfer mechanism for the uranyl catalyzed C?H fluorination under blue light. Along the reaction path of the triplet state it was found that the hydrogen atom abstraction triggered by the electron‐rich oxygen of the uranyl moiety is the rate‐limiting step. The subsequent steps, that is, N?F and O?H bond breakage in a manner of concerted asynchronicity, generation of the targeted fluorinated product, and recovery of the photocatalyst are nearly barrierless. Moreover the single electron transfer between the reactive substrates plays a fundamental role during the whole photocatalytic cycle.  相似文献   

4.
We have studied the charge‐transfer‐induced deactivation of nπ* excited triplet states of benzophenone derivatives by O2(3Σ), and the charge‐transfer‐induced deactivation of O2(1Δg) by ground‐state benzophenone derivatives in CH2Cl2 and CCl4. The rate constants for both processes are described by Marcus electron‐transfer theory, and are compared with the respective data for a series of biphenyl and naphthalene derivatives, the triplet states of which have ππ* configuration. The results demonstrate that deactivation of the locally excited nπ* triplets occurs by local charge‐transfer and non‐charge‐transfer interactions of the oxygen molecule with the ketone carbonyl group. Relatively large intramolecular reorganization energies show that this quenching process involves large geometry changes in the benzophenone molecule, which are related to favorable Franck‐Condon factors for the deactivation of ketone‐oxygen complexes to the ground‐state molecules. This leads to large rate constants in the triplet channel, which are responsible for the low efficiencies of O2(1Δg) formation observed with nπ* excited ketones. Compared with the deactivation of ππ* triplets, the non‐charge‐transfer process is largely enhanced, and charge‐transfer interactions are less important. The deactivation of singlet oxygen by ground‐state benzophenone derivatives proceeds via interactions of O2(1Δg) with the Ph rings.  相似文献   

5.
The steric hindrance between the oxygen and halogen atoms results in the structural deformation of α-haloanthraquinones and their lowest excited triplet (T1) states are of mixed nπ *-ππ * or ππ * character with unusually short lifetimes. Moreover, the rates of hydrogen-atom abstraction from ethanol by the T1 states decrease with their increasing ππ * character, and the proximity of the halogen atom to the hydroxy group causes the photochemical intramolecular elimination of hydrogen halide from the initial photoproducts (α-haloanthrahydroquinones) yielding α-haloanthraquinones (or anthraquinone) with one less halogen atom than the original molecule; the final product is anthrahydroquinone. The remarkably large structural deformation of 1,8-dihaloanthrasemiquinone radicals which gives rise to the simultaneous formation of 1,8-dihaloanthrahydroquinones and the original anthraquinones. Of particular interest is observation of the absorption band(s) attributable to the second excited triplet (T2) states of 1,8-dihaloanthraquinones. However, the electron transfer from triethylamine (TEA) to these T2 states generating the radical anions is observed only in acetonitrile, while that to the T1 states generating their exciplexes with TEA is observed not only in acetonitrile but also in toluene and ethanol.  相似文献   

6.
An efficient catalytic one‐step conversion of benzene to phenol was achieved recently by selective photooxidation under mild conditions with 2,3‐dichloro‐5,6‐dicyano‐p‐benzoquinone (DDQ) as the photocatalyst. Herein, high‐level electronic structure calculations in the gas phase and in acetonitrile solution are reported to explore the underlying mechanism. The initially populated 1ππ* state of DDQ can relax efficiently through a nearby dark 1nπ* doorway state to the 3ππ* state of DDQ, which is found to be the precursor state involved in the initial intermolecular electron transfer from benzene to DDQ. The subsequent triplet‐state reaction between DDQ radical anions, benzene radical cations, and water is computed to be facile. The formed DDQH and benzene‐OH radicals can undergo T1→S0 intersystem crossing and concomitant proton‐coupled electron transfer (PCET) to generate the products DDQH2 and phenol. Two of the four considered nonadiabatic pathways involve an orientation‐dependent triplet PCET process, followed by intersystem crossing to the ground state (S0). The other two first undergo a nonadiabatic T1→S0 transition to produce a zwitterionic S0 complex, followed by a barrierless proton transfer. The present theoretical study identifies novel types of nonadiabatic PCET processes and provides detailed mechanistic insight into DDQ‐catalyzed photooxidation.  相似文献   

7.
The 1‐cyclopropyl‐6‐fluoro‐1,4‐dihydro‐4‐oxo‐7‐(piperazin‐1‐yl)quinoline‐3‐carboxylic acid (=ciprofloxacin; 1 ) undergoes low‐efficiency (Φ=0.07) substitution of the 6‐fluoro by an OH group on irradiation in H2O via the ππ* triplet (detected by flash photolysis, λmax 610 nm, τ 1.5 μs). Decarboxylation is a minor process (≤5%). The addition of sodium sulfite or phosphate changes the course of the reaction under neutral conditions. Reductive defluorination is the main process in the first case, while defluorination is accompanied by degradation of the piperazine moiety in the presence of phosphate. In both cases, the initial step is electron‐transfer quenching of the triplet (kq=2.3⋅108M −1 s−1 and 2.2⋅107M −1 s−1, respectively). Oxoquinoline derivative 1 is much more photostable under acidic conditions, and in this case the F‐atom is conserved, and the piperazine group is stepwise degraded (Φ=0.001).  相似文献   

8.
Using photochemical electron transfer, N,N-dimethylnaphthylamine derivatives are added to α,β-unsaturated carboxylates. The addition takes place exclusively in the α-position of electron-deficient alkenes and mainly in the 4-position of N,N-dimethylnaphthalen-1-amine. A minor regioisomer results from the addition in the 5-position of this naphthylamine. A physicochemical study reveals that the fluorescence quenching of N,N-dimethylnaphthalen-1-amine is diffusion-controlled and that the back electron transfer is highly efficient. Therefore no transformation is observed at lower concentrations. To overcome this limitation and to induce an efficient transformation, minor amounts of water or another proton donor as well as an excess of the naphthylamine derivative are necessary. A mechanism involving a contact radical ion pair is discussed. Isotopic labeling experiments reveal that no hydrogen is directly transferred between the substrates. The hydrogen transfer to the furanone moiety observed in the overall reaction therefore results from an exchange with the reaction medium. An electrophilic oxoallyl radical generated from the furanone reacts with the naphthylamine used in excess. Concerning some mechanistic details, the reaction is compared with radical and electrophilic aromatic substitutions. The transformation was carried out with a variety of electron-deficient alkenes. Sterically hindered furanone derivatives are less reactive under standard conditions. In a first experiment, such a compound was transformed using heterogeneous electron transfer photocatalysis with TiO(2).  相似文献   

9.
The regioselectivity for the intrazeolite photooxygenation of several trisubstituted alkenes with geminal dimethyl groups was examined. The length of the alkyl chain at the lone position was varied, and as end groups, the phenyl or the cyclohexyl functionalities were chosen. The general trend for all alkenes is a significant increase of the reactivity at the twin position compared to the photooxygenation in solution. For the cyclohexyl-substituted alkenes, it was found that the regioselectivity is nearly independent of the alkyl chain length. However, for the phenyl-substituted alkenes, the ene reactivity of the allylic methylene hydrogen atoms at the lone position and the twix/twin regioselectivity depend significantly on the distance of the phenyl group from the double bond. These trends are discussed in terms of cation-pi interactions and conformational effects. Intramolecular and intermolecular isotope effects in the intrazeolite photooxygenation of deuterium-labeled alkenes suggest that a perepoxide-type intermediate is formed in the rate-determining step. Type I photooxygenation that involves reaction of the radical cations of the alkenes with superoxide ion are unlikely.  相似文献   

10.
Laser flash photolysis of a series of bichromophoric compounds 1-12 containing the 2-benzoylthiophene (BT) and phenol (PhOH) or indole (InH) moieties has been used to determine the possible geometrical effects in the intramolecular quenching of triplet excited ketones, resulting in formal hydrogen abstraction. The results are compared with those obtained in the intermolecular process. In both cases, substitution either at the thienyl or the phenyl moiety has a marked influence on the photoreactivity. Time-resolved experiments showed that the rate constants for bimolecular quenching by phenol and indole of 2-benzoylthiophene substituted at the thienyl 5-position were lower than those for BT substituted at the phenyl p-position, which agrees with the higher energy found for the excited triplet state of the latter compounds. However, the rate constant for hydrogen abstraction in the bichromophoric compounds by the pi,pi* triplet state of the derivatives with the spacer linked to the thienyl 5-position are higher than those of their regioisomers. These results indicate a possible geometry-dependence in the intramolecular quenching process. Theoretical DFT studies have been carried out in order to estimate the optimum conformation for hydrogen abstraction in two pairs of phenolic and indolic bichromophoric regioisomers. The energy profile for photoactivation/deactivation of the aromatic ketone and the structures of the triplet states and biradicals involved in the process have been determined. The observed regiodifferentiation in the experimental studies is consistent with a dependence of the rate constant on orbital overlap between the carbonyl oxygen and the X-H bonds.  相似文献   

11.
A series of new chiral 2(5H)‐furanone derivatives containing bis‐1,2,3‐triazole moiety were designed and synthesized from (5S)‐5‐alkoxy‐3,4‐dihalo‐2(5H)‐furanones 1 , dicarboxyl amino acids 2 , propargyl bromide, and organic azides 5 under mild conditions via the sequential three steps, including asymmetric Michael addition‐elimination, substitution and no‐ligand click reaction. Twelve new intermediates, including N‐[5‐alkoxy‐2(5H)‐furanonyl] dicarboxyl amino acids 3 and their corresponding propargyl esters 4 , and twelve target molecules 6 were characterized by FTIR, 1H NMR, 13C NMR, MS and elemental analysis. The influences of different synthetic conditions and substrates in each step were investigated. The research provides a new method and idea for the synthesis of 2(5H)‐furanone compounds with polyheterocyclic structure due to the diversities of four basic unit molecules.  相似文献   

12.
Nanosecond laser photolysis techniques were incorporated to obtain (1) the absorption spectra and coefficients of triplet vitamin K3 (2-methyl-1,4-naphthoquinone, MNQ) and its ketyl radical (2-methylnaphthosemiquinone, 2MNQH*) in acetonitrile (ACN) as well as to reveal (2) the mechanisms for hydrogen atom abstraction of triplet MNQ (3MNQ*) from phenol which proceeded in a diffusion process with an efficiency of unity. On the other hand, the hydroxymethylnaphthoxy radical was produced with the benzophenone ketyl radical (BPK) by the hydrogen atom transfer from triplet 2-methyl-1,4-dihydroxynaphthalene (MDHNp) sensitized by triplet benzophenone to benzophenone (BP) via the triplet exciplex. The question to be addressed was, which was produced in the MDHNp-BP system, the 2-methyl or 3-methylnaphthosemiquinone radical? Comparing the absorption spectrum and coefficient of the radical produced via the triplet exciplex with those of the 2MNQH* obtained by H-atom abstraction of 3MNQ*, the radical formed with BPK was revealed to be 2MNQH*. The reasons for the preferable formation of 2MNQH* are discussed for H-atom abstraction as well as the transfer reactions.  相似文献   

13.
Mononuclear nonheme MnIII‐peroxo complexes are important intermediates in biology, and take part in oxygen activation by photosystem II. Herein, we present work on two isomeric biomimetic side‐on MnIII‐peroxo intermediates with bispidine ligand system and reactivity patterns with aldehydes. The complexes are characterized with UV/Vis and mass spectrometric techniques and reaction rates with cyclohexane carboxaldehyde (CCA) are measured. The reaction gives an unusual regioselectivity switch from aliphatic to aldehyde hydrogen atom abstraction upon deuteration of the substrate, leading to the corresponding carboxylic acid product for the latter, while the former gives a deformylation reaction. Mechanistic details are established from kinetic isotope effect studies and density functional theory calculations. Thus, replacement of C?H by C?D raises the hydrogen atom abstraction barriers and enables a regioselectivity switch to a competitive pathway that is slightly higher in energy.  相似文献   

14.
Radical alkylation of some ketene dithioacetal S,S-dioxides failed through the tin hydride promoted chain process but was successfully performed through stoichiometric photochemical initiation, either by electron transfer or hydrogen abstraction. In the first case, alkyl radicals were produced from tetralkylstannanes (t-Bu-, i-Pr-, n-Bu-SnR(3)) via radical cation fragmentation, while in the second case these were produced from alkanes (cyclohexane, adamantane) by benzophenone triplet. When bulky radicals (t-Bu, adamantyl) were involved, the addition occurred with complete diastereoselectivity.  相似文献   

15.
The hydrogen-atom abstraction of the title compounds from ethanol was found to originate from the T1 state in spite of the mixed nπ*-ππ* or ππ* character of the lowest triplet state (T1). No evidence for electron transfer from ethanol to the T1 state of α-halogenoanthraquinones was obtained.  相似文献   

16.
The photoinitiated grafting of maleic anhydride (MAH) onto polypropylene with the use of benzophenone (BP) as the initiator has been investigated. In comparison with the process of thermally initiated grafting with peroxide as the initiator, photoinitiated grafting affords a higher grafting efficiency. The efficient photografting sensitized by BP can be explained by two possible mechanistic processes: the sensitization of the formation of the excited triplet state of MAH by BP and electron transfer followed by proton transfer between MAH and the benzopinacol radical, which may operate together. In the former case, the generated MAH excited triplet state abstracts a hydrogen from the polymer substrate to initiate grafting. A rate constant of 3.6 × 109 M ?1 s ?1 has been determined by laser flash photolysis for the process of quenching the excited triplet state of BP with ground‐state MAH. In comparison, the rate constant for the quenching of the excited triplet state of BP by hydrogen abstraction has been determined to be 4.1 × 105 M ?1 s ?1. In a study of photografting using a model compound, 2,4‐dimethylpentane, as a small‐molecule analogue of polypropylene, the loss of BP was significantly reduced upon the addition of MAH, and this is consistent with the proposed mechanistic processes. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1953–1962, 2004  相似文献   

17.
In the preceding paper [1] a novel primary photochemical process of triplet excited α,β-conjugated cycloalkenones in toluene solution has been reported: the abstraction of a benzylic hydrogen from the solvent by the β-carbon (cf. 1 → 2 + 3 + 4 ). The reaction has been attributed to the π,π* triplet. Aromatic aldehydes and ketones ( 5–11a ), the triplet state reactivity of which is known to be mostly π,π* in nature, have now been examined under the same irradiation conditions. However, a reaction similar to that of cycloalkenones — expected to result in the addition of hydrogen to the ortho and para positions of the aryl moiety and the formation of benzylcyclohexa-1,3-and 1,4-diene derivatives — could not been found. Compounds 5 – 10 remained essentially unchanged. 4-Methoxyacetophenone ( 11a ) reacted slowly to form the same type of products [tert-carbinol 12a , pinacol 13a and dibenzyl ( 4 )] as the aromatic carbonyl compounds 11b-d , benzophenone and cyclopropylphenylketone, which exhibit typical n,π* triplet reactivity (hydrogen abstraction by the carbonyl oxygen).  相似文献   

18.
Radical intermediates (phenyl and phenylcarbonyl radicals) formed in photooxidation of 4,4"-diazidodiphenyl in benzene and toluene have been studied by ESR spectroscopy. These radicals are formed as a result of abstraction of a hydrogen atom from a solvent molecule by the triplet nitrene—dioxygen complex.  相似文献   

19.
Mechanisms of hydrogen atom abstraction reactions of the sugar moiety of 2′‐deoxyguanosine with an OH radical were investigated using the B3LYP and BHandHLYP functionals of density functional theory and the second order Møller–Plesset Perturbation (MP2) theory in gas phase and aqueous media. The 6‐31+G* and AUG‐cc‐pVDZ basis sets were used. Gibbs free barrier energies and rate constants of the reactions in aqueous media suggest that an OH radical would abstract the hydrogen atoms of the sugar moiety of 2′‐deoxyguanosine in the following order of preference: H5′ ≈ H5″ > H3′ > H4′ > H1′ ≈ H2′ > H2″, the rate constant for H5′ abstraction being 103–105 times greater than that for H2″ at the different levels of theory. Relative stabilities of the different deoxyribose radicals are also discussed. The most and least favored hydrogen abstraction reactions found here are in agreement with experimental observation. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

20.
The photochemistry and photophysics of pyrylium derivatives with organic sulfides in acetonitrile medium are investigated. A steady decrease in the fluorescence intensity and fluorescence lifetime of the dyes was observed with increase in the quencher concentration. Bimolecular quenching constants were evaluated and correlated with the free energy of electron transfer. Laser flash photolysis investigations on the dyes in presence of quenchers were done. Observation of pyranyl radical and sulfide cation radicals as intermediates clearly illustrates the electron transfer mechanistic pathway for this reaction. The radical pair energies were calculated and found to be lower than the triplet energy of the sensitisers and hence we do not see any triplet induction in the present system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号