首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 151 毫秒
1.
The authors describe a method for signal amplification of label-free voltammetric immunosensors. A glassy carbon electrode (GCE) was modified with Prussian Blue-platinum nanoparticles (PB-PtNPs) as a redox-active species that gives a strong amperometric signal at 0.18 V (vs. Ag/AgCl). Benefitting from the excellent electrical conductivity and the strong catalytic activity to H2O2, the modified GCE gives a strongly enhanced signal. The PB-PtNPs were incorporated into a polyaniline (PANI) hydrogel to further enhance the signal. The signal response of the PB-PtNP-PANI/GCE is larger by a factor of 7.6 than that of PB-PtNP/GCE. In order to further improve electrical conductivity and immobilize antibody, gold nanoparticles (AuNPs) were deposited on the surface of the PB-PtNP-PANI hydrogel. The AuNP-PB-PtNP-PANI hydrogel nanocomposite on the GCE was used in an immunosensor for the model analyte carcinoma antigen 125 (CA125), a biomarker for epithelial ovarian cancer, by immobilizing the respective antibody on the modified GCE. A linear response found for the 0.01 to 5000 U mL?1 CA125 concentration range, with a detection limit of 4.4 mU mL?1 (at an S/N ratio of 3). The electrochemical sensitivity is as high as 119.76 μA·(U/mL)?1·cm?2. The detection of CA125 in human serum showed satisfactory accuracy compared to a commercial chemiluminescent microparticle immunoassay (CMIA).
Graphical abstract Schematic of a nanocomposites consisting of gold nanoparticles, Prussian Blue, platinum nanoparticles and polyaniline hydrogel as a signal multi-amplification sensing substrate for the ultrasensitive immuno detection of carcinoma antigen 125 (CA125).
  相似文献   

2.
CdSe:Eu nanocrystals were successfully synthesized and characterized by transmission electron microscopy, X-ray powder diffraction, and X-ray photoelectric spectroscopy. The CdSe:Eu nanocrystals showed enhanced green electrochemiluminescence (ECL) intensity when compared to pure CdSe nanocrystals. Further, the nanocrystals were used to design an ECL immunosensor for the detection of carcinoembryonic antigen (CEA) that has a linear response over the 1.0 fg·mL?1 to 100 ng·mL?1 CEA concentration range with a 0.4 fg·mL?1 detection limit. The assay was applied to the determination of CEA in human serum samples.
Graphical abstract Schematic of the assay: GCE-glassy-carbon electrode, Ab- Antibody, BSA- Bovine serum albumin, Ag- Antigen. CdSe:Eu nanocrystals were used to design an ECL immunosensor for the detection of carcinoembryonic antigen.
  相似文献   

3.
The authors describe a voltammetric immunosensor with antibody immobilized on a glassy carbon electrode (GCE) modified with N-doped graphene (N-GS), electrodeposited gold nanoparticles (AuNPs) and chitosan (Chit). The preparation is simple and the thickness of the electrodeposited films can be well controlled. Due to the specific advantages of N-GS, AuNPs and Chit, the electrode has a large specific surface, improved conductivity, high stability. A new label-free immunosensor for the model antigen (alpha fetoprotein, AFP) detection was then designed by employing N-GS-AuNP-Chit as the antibody immobilization and signal amplification platform. Differential pulse voltammetry and electrochemical impedance spectroscopy were used for the characterization of the stepwise assembly process. Under the optimized conditions, at a typical working potential of +0.20 V (vs. SCE), and by using hexacyanoferrate as an electrochemical probe, the immunosensor has a detection limit as low as 1.6 pg mL?1 and a linear analytical range that extends from 5 pg mL?1 to 50 ng mL?1. AFP was quantified in spiked human serum samples with acceptable precision.
Graphical Abstract Schematic of sensitive and effective label-free electrochemical immunosensor for the detection of AFP based on N-GS-AuNP-Chit as signal amplification matrix.
  相似文献   

4.
We describe a label-free electrochemical immunosensor for the carcinoembryonic antigen (CEA). It is based on a nanocomposite consisting of electrochemically reduced graphene oxide, gold nanoparticles (AuNPs), and poly(indole-6-carboxylic acid). Coupled to nanoparticle-amplification techniques and modified with ionic liquid (IL), this immunoassay shows high sensitivity and good selectivity for CEA. At the best working voltage of 0.95 V (vs. Ag/AgCl), the lower detection limit is 0.02 ng·mL?1, and the response to CEA is linear in the range from 0.02 to 90 ng·mL?1. The method was applied to the determination of CEA in spiked serum samples and gave recoveries in the range from 98.5 % to 102 %.
Graphical abstract A label-free electrochemical immunosensor was fabricated for the carcinoembryonic antigen (CEA) with a detection limit of 0.02 ng·mL?1. It is based on a nanocomposite consisting of electrochemically reduced graphene oxide (erGO), gold nanoparticles (Au NP), and poly(indole-6-carboxylic acid) (PICA).
  相似文献   

5.
The authors describe a disposable electrochemical immunosensor strip for the detection of the Japanese encephalitis virus (JEV). The assay is based on the use of a screen printed carbon electrode (SPCE) modified with carbon nanoparticles (CNPs) that were prepared from starch nanoparticles and deposited on the SPCE working electrode whose surface was functionalized with 3-aminopropyl triethoxysilane. Next, antibody of JEV was immobilized on the surfaces of the CNPs. The analytical performance of immunosensor strip was characterized using cyclic voltammetry (with hexacyanoferrate as the redox probe) and electrochemical impedance spectroscopy. The deposition of CNPs enhances the electron transfer kinetics and current intensity of the SPCE by 63% compared to an unmodified SPCE. Under optimized conditions, the calibration plot is linear within the 5–20 ng·mL?1 JEV concentration range, the limit of detection being 2 ng·mL?1 (at an S/N ratio of 3), and the assay time is 20 min. This immunosensor strip was successfully applied to the detection of JEV in human serum samples. It represents a cost-effective alternative to conventional diagnostic tests for JEV.
Graphical abstract A disposable carbon nanoparticles modified screen printed carbon electrode (SPCE) immunosensor strip for Japanese encephalitis virus (JEV) detection is described. A limit of detection of 2 ng·mL?1 and an assay time of 20 min were achieved.
  相似文献   

6.
The authors report on an electrochemical immunosensor for the tumor marker carbohydrate antigen 15–3 (CA15–3). It is based on the use of a composite consisting of reduced graphene oxide (RGO) and copper sulfide (CuS) that was placed on a screen-printed graphite electrode. The electrode shows excellent activity towards the oxidation of catechol acting as an electrochemical probe, best at a working potential of 0.16 V. The electrode was modified with antibody against CA15–3. Once the analyte (CA15–3) binds to the surface of the electrode, the response to catechol is reduced. The assay has a linear response in the 1.0–150 U mL?1 CA15–3 concentration range, with a 0.3 U mL?1 lower detection limit and a sensitivity of 1.88 μA μM?1 cm?2. The immunosensor also shows good reproducibility (2.7%), stability (95% of the initial values after storing for four weeks). The method was successfully applied to the determination of CA15–3 in serum samples, and results were found to compare well to those obtained by an ELISA. Conceivably, this nanocomposite based detection scheme has a wider scope and may be applied to numerous other immunoassays.
Graphical abstract A label-free electrochemical immunosensor based on copper sulfides/graphene nanocomposites was developed for enzyme-free determination of CA15–3 biomarker. This immunosensor can be utilized as a tool to detect of CA15–3 in real samples.
  相似文献   

7.
Electrochemical sandwich immunoassay strategies involving the use of carboxyl-functionalized magnetic microbeads (cMBs) and magnetic nanoparticles (cMNPs) have been evaluated and compared. The proteolytically cleaved soluble tyrosine kinase receptor sAXL was used as the target analyte. Antibodies against AXL were covalently immobilized on cMBs or cMNPs. Immunobinding of AXL was detected by means of a secondary biotinylated antibody and a streptavidin-horseradish peroxidase conjugate. The electrochemical transduction was accomplished by capturing the cMBs or cMNPs bearing the immunoconjugates onto screen-printed carbon electrodes (SPCEs) by using a small magnet. The amperometric response was measured at ?0.20 V (vs the silver pseudo-reference electrode of the SPCE) upon the addition of H2O2 in the presence of hydroquinone as the redox mediator. The calibration plots for AXL extended up to 7.5 ng mL?1 when cMBs were used for the preparation of the immunosensor and up to 40 ng mL?1 in the case of using cMNPs. The respective slope values were 158 (cMBs) and 43 nA mL ng?1 (cMNPs), while the achieved LODs were 74 (cMBs) and 75 pg mL?1 (cMNPs). Although the immunosensors prepared with cMBs provided a shorter range of linearity, they exhibited a 3.7-times larger sensitivity than those constructed with cMNPs. The successful application of the new strategies was demonstrated for the determination of the endogenous content of sAXL in real human serum samples (a cut-off value of 71 ng mL?1 have been established for patients with risk of heart failure). The immunosensors constructed using cMBs or cMNPs can be advanta geously compared, in terms of sensitivity and fabrication time, with the only immunosensor for AXL previously reported. In addition, these new immunosensors took approximately half time than ELISA to perform the assay.
Graphical abstract Comparative evaluation of the performance of amperometric immunosensors for tyrosine kinase receptor AXL determination using carboxyl-modified magnetic microparticles (cMBs) and nanoparticles (cMNPs) and application to the determination of the endogeneous concentration in real human serum samples.
  相似文献   

8.
A three-dimensional porous network graphene aerogel (GAs) with large specific area and excellent conductivity was loaded with β-cyclodextrin polymer (Pβ-CD) to serve as a support for immobilization of antibodies. A highly sensitive immunosensor for the cancer marker carbohydrate antigen 15–3 (CA15–3) was designed based on the use of Pβ-CD/GAs. The large specific area of GAs warrants high loading with antibodies, and their excellent electrical conductivity warrants strong electrical signals. Based on the synergistic effect of GAs and Pβ-CD, an immunoassay was designed that is making use of hexacyanoferrate as an electrochemical probe and having a pleasantly low working potential of 0.2 V (vs. SCE). Response is linear in the 0.1 mU mL?1 to 100 U mL?1 activity range, and the lower detection limit is 0.03 mU mL?1 (at S/N =?3). The immunoassay is stable, selective and reproducible. It was applied to the analysis of spiked samples, and results were satisfactory.
Graphical abstract Schematic of an electrochemical immunoassay for the carbohydrate antigen 15–3. It is based on the use of β-cyclodextrin polymer and a graphene aerogel.
  相似文献   

9.
The family of zearalenones (ZENs) represents a major group of mycotoxins with estrogenic activity. They are produced by Fusarium fungi and cause adverse effects on human health and animal production. The authors describe here a label-free amperometric immunosensor for the direct determination of ZENs. A glassy carbon electrode (GCE) was first modified with polyethyleneimine-functionalized multi-walled carbon nanotubes. Next, gold and platinum nanoparticles (AuPt-NPs) were electro-deposited. This process strongly increased the surface area for capturing a large amount of antibodies and enhanced the electrochemical performance. In a final step, monoclonal antibody against zearalenone was orientedly immobilized on the electrode, this followed by surface blocking with BSA. The resulting biosensor was applied to the voltammetry determination of ZENs, best at a working voltage of 0.18 V (vs SCE). Under optimized conditions, the method displays a wide linear range that extends from 0.005 to 50 ng mL?1, with a limit of detection of 1.5 pg mL?1 (at an S/N ratio of 3). The assay is highly reproducible and selective, and therefore provides a sensitive and convenient tool for determination of such mycotoxins.
Graphical abstract An amperometric immunosensor for the direct determination of ZENs has been developed by immobilizing anti-ZEN monoclonal antibody on multi-walled carbon nanotubest hat were deposited, along with gold and platinum nanoparticles, on a glassy carbon electrode modified with Staphylococcus protein A.
  相似文献   

10.
The authors describe a sandwich-type electrochemical immunoassay for sensitive determination of the carcinoembryonic antigen (CEA). It is based on the use of iridium nanoparticles (Ir NPs) acting as electrochemical signal amplifier on the surface of a glassy carbon electrode. At first, polydopamine-reduced graphene oxide (PDA-rGO) was employed to immobilize primary antibody (Ab1) against CEA. Secondly, Ir-NPs were used as a support for the immobilization of secondary antibody (Ab2) to afford signal labels. The large surface area of PDA-rGO and the excellent electro-oxidative H2O2-sensing properties of Ir NPs result in a sensitive assay for CEA. Operated best at a working voltage of ?0.6 V (vs. SCE), the assay has a linear range that extends from 0.5 pg?mL?1 to 5 ng·mL?1, and the lower detection limit is 0.23 pg?mL?1. The immunosensor displays satisfactory reproducibility and stability, thus demonstrating a reliable immunoassay strategy for tumor biomarkers. It was applied to the determination of CEA in spiked serum samples.
Graphical abstract Schematic of an amperometric sandwich immunoassay for the carcinoembryonic antigen using a glassy carbon electrode modified with polydopamine, reduced graphene oxide and iridium nanoparticles
  相似文献   

11.
Tungsten disulfide (WS2) nanosheets were obtained by exfoliating WS2 bulk crystals in N-methylpyrrolidone by ultrasonication. Gold nanoparticles (GNPs) were synthesized by in-situ ultrasonication of sodium citrate and HAuCl4 while fabricating the WS2 nanosheets. In this way, the GNPs were self-assembled on WS2 nanosheets to form a GNPs/WS2 nanocomposite through interaction between sulfur and gold atoms. The photoelectrochemical response of WS2 nanosheets is significantly enhanced after integration of the GNPs. The GNPs/WS2 nanocomposite was coated onto a glassy carbon electrode (GCE) to construct a sensing interface which then was modified with an antibody against the carcinoembryonic antigen (CEA) to obtain a photoelectrochemical immunosensor for CEA. Under optimized conditions, the decline in relative photocurrent is linearly related to the logarithm of the CEA concentration in the range from 0.001 to 40 ng mL?1. The detection limit is 0.5 pg mL?1 (at S/N =?3). The assay is sensitive, selective, stable and reproducible. It was applied to the determination of CEA in clinical serum samples.
Graphical abstract Schematic presentation of the fabrication of Au/WS2 nanocomposites by in-situ ultrasonication and the procedure for the CEA photoelectrochemical immunosensor preparation, and the photocurrent response towards the carcinoembryonic antigen.
  相似文献   

12.
Diphenyl diselenide was immobilized on chitosan loaded with magnetite (Fe3O4) nanoparticles to give an efficient and cost-effective nanosorbent for the preconcentration of Pb(II), Cd(II), Ni(II) and Cu(II) ions by using effervescent salt-assisted dispersive magnetic micro solid-phase extraction (EA-DM-μSPE). The metal ions were desorbed from the sorbent with 3M nitric acid and then quantified via microflame AAS. The main parameters affecting the extraction were optimized using a one-at-a-time method. Under optimum condition, the limits of detection, linear dynamic ranges, and relative standard deviations (for n?=?3) are as following: Pb(II): 2.0 ng·mL?1; 6.3–900 ng·mL?1; 1.5%. Cd(II): 0.15 ng·mL?1; 0.7–85 ng·mL?1, 3.2%; Ni(II): 1.6 ng·mL?1,.6.0–600. ng·mL?1, 4.1%; Cu(II): 1.2 ng·mL?1, 3.0–300 ng·mL?1, 2.2%. The nanosorbent can be reused at least 4 times.
Graphical abstract Fe3O4-chitosan composite was modified with diphenyl diselenide as a sorbent for separation of metal ions by effervescent salt-assisted dispersive magnetic micro solid-phase extraction.
  相似文献   

13.
A dual enhancing strategy has been employed to develop a sandwich type of electrochemical immunoassay for the prostate specific antigen (PSA). The signal is enhanced by using Pt-Cu hierarchical trigonal bipyramid nanoframes (HTBNFs) and a composite consisting of Fe3O4 nanoparticles and reduced graphene oxide in polydopamine that serve to capture the primary antibody (Ab1). This nanocomposite shows better electrical conductivity than Fe3O4 and reduced graphene oxide (RGO), respectively, alone. The Pt-Cu HTBNFs were used to label the secondary antibody (Ab2) and act as tags for signal amplification by virtue of their outstanding electrochemical reduction activity towards H2O2. At a working potential of +0.1 V (vs. SCE), the interference by dissolved oxygen can be avoided. This immunoassay is highly sensitive, with a linear range that extends from 0.1 pg?mL?1 to 5 ng?mL?1 and an ultralow detection limit of 0.03 pg?mL?1.
Graphical abstract Schematic of the dual amplification strategy in the immunosensor for the prostate specific antigen (PSA) that is based on the use of a first antibody (Ab1) conjugated to a Fe3O4-reduced graphene oxide nanocomposite (Fe3O4-RGO), and of Pt-Cu trigonal bipyramid nanoframes as a label for the second antibody (Ab2).
  相似文献   

14.
The authors describe an immunoassay for the determination of carcinoembryonic antigen (CEA) tumor markers by depositing a polydopamine-Pb(II) nanocomposite on the surface of a glassy carbon electrode. The nanocomposite acts as a redox system that displays a large specific surface and provides a strong current signal at ?0.464 V (vs. Ag/AgCl). After the deposition of PDA-Pb2+ on glassy carbon electrode, the electrode was additionally coated with a chitosan-gold nanocomposite. The immunoassay platform was obtained by immobilization of antibodies against carcinoembryonic antigens by using glutaraldehyde and blocking with bovine albumin. Owing to its large surface, good electrical conductivity and powerful current response, the immunoassay has a wide linear range that extends from 1 fg·mL?1 to 100 ng·mL?1, with a detection limit as low as 0.26 fg·mL?1. The results obtained with this immunoassay when determining CEAs in human serum were found to be consistent with those obtained by ELISAs.
Graphical abstract Schematic of an ultrasensitive electrochemical immunosensor for the carcinoembryonic antigen. It is based on a glassy carbon electrode modified with a polydopamine-Pb(II) nanocomposite acting as a signal-inherent substrate.
  相似文献   

15.
A dual-responsive sandwich-type immunosensor is described for the detection of interleukin 6 (IL-6) by combining electrochemiluminescent (ECL) and electrochemical (EC) detection based on the use of two kinds of TiO2 mesocrystal nanoarchitectures. A composite was prepared from TiO2 (anatase) mesocages (AMCs) and a carboxy-terminated ionic liquid (CTIL) and then placed on a glassy carbon electrode (GCE). In the next step, the ECL probe Ru(bpy)3(II) and antibody against IL-6 (Ab1) were immobilized on the GCE. Octahedral anatase TiO2 mesocrystals (OAMs) served as the matrix for immobilizing acid phosphatase (ACP) and secondary antibody (Ab2) labeled with horseradish peroxidase (HRP) to form a bioconjugate of type Ab2-HRP/ACP/OAMs. It was self-assembled on the GCE by immunobinding. 1-Naphthol, which is produced in-situ on the surface of the GCE due to the hydrolysis of added 1-naphthyl phosphate by ACP, is oxidized by HRP in the presence of added H2O2. This results in an electrochemical signal (typically measured at 0.4 V vs. Ag/AgCl) that increases linearly in the 10 fg·mL?1 to 90 ng·mL?1 IL-6 concentration range with a detection limit of 0.32 fg·mL?1. Secondly, the oxidation product of 1-naphthol quenches the ECL emission of Ru(bpy)32+. This leads to a decrease in ECL intensity which is linear in the 10 ag·mL?1 to 90 ng·mL?1 concentration range, with a detection limit of 3.5 ag·mL?1. The method exhibits satisfying selectivity and good reproducibility which demonstrates its potential in clinical testing and diagnosis.
Graphical abstract A dual-responsive sandwich-type immunosensor was fabricated for the detection of interleukin 6 by combining electrochemiluminescence and electrochemical detection based on the use of two kinds of TiO2 mesocrystal nanoarchitectures.
  相似文献   

16.
The authors describe a voltammetric immunoassay for the carcinoembryonic antigen (CEA). A GCE was modified by electrodeposition of poly(3,4-ethylenedioxythiophene) (PEDOT) doped with tannic acid (TA). Subsequently, four-armed poly(ethylene glycol) (PEG) was assembled onto the modified surface through hydrogen bonding. The fabrication steps were characterized by scanning electron microscopy, energy dispersive spectroscopy, fourier transform infrared spectroscopy, contact angle measurements, electrochemical impedance spectroscopy and differential pulse voltammetry. The PEG/TA-PEDOT surface is shown be super-hydrophilic and to possess anti-fouling capability. Antibody against CEA was then covalently immobilized on the electrode. By using hexacyanoferrate as an electrochemical probe and at a working potential of 0.18 V vs SCE, the amperometric response is linear in the 10 ag·mL?1 to 1.0 ng·mL?1 CEA concentration range, and the detection limit is as low as 4.8 ag·mL?1 (at an S/N ratio of 3). The assay was applied to the quantification of CEA in 1:10 diluted human serum samples. Recoveries ranged from 103.7 to 108.7%, and relative standard deviations from 2.9 to 4.8%.
Graphical abstract Schematic of an electrochemical immunosensor for the carcinoembryonic antigen (CEA). It is based on the use of tannic acid (TA) and poly(ethylene glycol) (PEG), both deposited on a glassy carbon electrode (GCE), and using hexacyanoferrate as the electrochemical probe. The sensor has a wide linear range and a 4.8 ag·mL?1 detection limit.
  相似文献   

17.
A magnetic sorbent was fabricated by coating the magnetized graphene oxide with polystyrene (PS) to obtain a sorbent of the type GO-Fe3O4@PS. The chemical composition and morphology of the sorbent were characterized. The sorbent was employed for the enrichment of polycyclic aromatic hydrocarbons (PAHs) from water samples. Various parameters affecting the enrichment were investigated. The PAHs were then quantified by gas chromatography with flame ionization detection. Linear responses were found in the range of 0.03–100 ng mL?1 for naphthalene and 2-methylnaphthalene, and of 0.01–100 ng mL?1 for fluorene and anthracene. The detection limits (at an S/N ratio of 3) range between 3 and 10 pg mL?1. The relative standard deviations (RSDs) for five replicates at three concentration levels (0.05, 5 and 50 ng mL?1) of analytes ranged from 4.9 to 7.4%. The method was applied to the analysis of spiked real water samples. Relative recoveries are between 95.8 and 99.5%, and RSD% are <8.4%.
Graphical abstract A magnetic sorbent was fabricated by polystyrene coated on the magnetic graphene oxide for the extraction and preconcentration of PAHs in water samples prior to their determination by gas chromatography with flame ionization detection.
  相似文献   

18.
CdTe quantum dots (QDs) were integrated with polyethyleneimine-coated carbon dots (PEI-CDs) to form a dually emitting probe for heparin. The red fluorescence of the CdTe QDs is quenched by the PEI-CDs due to electrostatic interactions. In the presence of heparin, the blue fluorescence of PEI-CDs remains unaffected, while its quenching effect on the fluorescence of CdTe QDs is strongly reduced. A ratiometric fluorometric assay was worked out. The ratio of the fluorescences at 595 and 436 nm serves as the analytical signal. Response is linear in the concentration range of 50–600 ng·mL?1 (0.1–1.2 U·mL?1) of heparin. The limit of detection is 20 ng·mL?1 (0.04 U·mL?1). This makes the method a valuable tool for heparin monitoring during postoperative and long-term care. This assay is relatively free from the interference by other analogues which commonly co-exist with heparin in samples, and it is more robust than single-wavelength based assays.
Graphical abstract In the presence of heparin, the fluorescence of polyethyleneimine-coated carbon dots (PEI-CDs) at 436 nm remains unaffected, while its quenching effect on the fluorescence of CdTe at 595 nm is strongly reduced.
  相似文献   

19.
The authors describe a fluorometric assay for ochratoxin A (OTA) that is based on the use of graphene oxide and RNase H-aided amplification. On addition of OTA, cAPT is replaced from the APT/cAPT hybridization complex and then hybridizes with RNA labeled with a fluorophore at the 5′-end. Eventually, the fluorophore is released by RNase H cleavage. As the concentration of OTA increases, more cAPTs are displaced, this leading to fluorescence enhancement (best measured at excitation/emission wavelengths of 495/515 nm). This RNase H-assisted cycle response results in strong signal amplification. The limit of detection, calculated on the basis of a signal to noise ratio of 3, is 0.08 ng·mL?1. Response is linear in the 0.08–200 ng·mL?1 OTA concentration range. The method is highly selective for OTA over ochratoxin B and aflatoxin B1. It was applied to the determination of OTA in red wine samples spiked at levels of 1, 7, and 50 ng·mL?1, and the recoveries ranged from 90.9 to 112%.
Graphical abstract Schematic of a novel fluorometric aptasensor for ochratoxin A based on the use of graphene oxide and RNase H-aided amplification.
  相似文献   

20.
The authors report on a robust method for the synthesis of gold nanorods (AuNRs) with tunable dimensions and longitudinal surface plasmon resonance. The method relies on seed-mediated particle growth in the presence of benzalkonium chloride (BAC) in place of the widely used surfactant cetyltrimethyl ammonium bromide (CTAB). Uniform AuNRs were obtained by particle growth in solution, and BAC is found to stabilize the AuNRs for >1 year. The SERS activity of the resulting AuNRs is essentially identical to that of CTAB-protected nanorods. The SERS activity of the BAC protected nanorods was applied to the quantitative analysis of potato virus X (PVX). The calibration plot for PVX is linear in the 10 to 750 ng?mL?1 concentration range, and the detection limit is 2.2 ng?mL?1.
Graphical abstract SERS-active gold nanorods (AuNRs) have been prepared by using benzalkonium chloride as stabilization agent. Effects of chemical parameters on AuNRs have been explored and AuNRs were used in quantitative analysis of potato virus X (PVX).
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号