首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 148 毫秒
1.
Olefin metathesis is a transition metal‐mediated transformation that rearranges the carbon atoms of the carbon–carbon double bond of olefins. This reaction has become one of the most important and powerful reactions. Therefore development of new, well‐defined, highly active and selective catalysts is very desirable and a valuable goal. This mini‐review mainly introduces the development of ruthenium catalysts in olefin metathesis highlighting oxygen‐chelated indenylidene ruthenium catalysts. Applying an alkoxyl group on the indenylidene ligand fragment can generate the Ru ? O chelating bond. Additionally, various modifications of the ligand as well as the catalytic activity for ring‐closing metathesis reaction and selectivity of cross metathesis reaction are overviewed. Finally, the perspectives on the development of new catalysts are summarized. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
In a quest of redox‐switchable metathesis catalysts we attempted synthesis of ruthenium quinonylidene complexes using two synthetic pathways. First, Hoveyda‐type complexes bearing chelating benzylidene and naphthylidene ligands substituted with two alkoxy/hydroxy groups were synthesized and characterized. The catalysts were tested in model ring‐closing metathesis reactions, and displayed interesting correlations between structure and catalytic activity. Unfortunately, numerous attempts at oxidation of the complexes to derivatives of benzo‐ and naphthoquinone were unsuccessful. However, the second approach, using exchange reaction of ruthenium precursor with vinylquinone ligand, gave a transient unstable product observed with 1H NMR. The experimental data suggest that conjugation of electron‐deficient quinones to the ruthenium centre results in intrinsically unstable species, which undergo secondary reactions under ambient conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
A series of ruthenium carbene catalysts containing 2‐sulfidophenolate bidentate ligand with an ortho‐substituent next to the oxygen atom were synthesized. The molecular structure of ruthenium carbene complex containing 2‐isopropyl‐6‐sulfidophenolate ligand was confirmed through single crystal X‐ray diffraction. An oxygen atom can be found in the opposite position of the N‐heterocyclic carbene (NHC) based on the steric hindrance and strong trans‐effects of the NHC ligand. The ruthenium carbene catalyst can catalyze ring‐opening metathesis polymerization (ROMP) reaction of norbornene with high activity and Z‐selectivity and cross metathesis (CM) reactions of terminal alkenes with (Z)‐but‐2‐ene‐1,4‐diol to give Z‐olefin products (Z/E ratios, 70:30–89:11) in low yields (13%–38%). When AlCl3 was added into the CM reactions, yields (51%–88%) were considerably improved and process becomes highly selective for E‐olefin products (E/Z ratios, 79:21–96:4). Similar to other ruthenium carbene catalysts, these new complexes can tolerate different functional groups.  相似文献   

4.
The development of selective olefin metathesis catalysts is crucial to achieving new synthetic pathways. Herein, we show that cis‐diiodo/sulfur‐chelated ruthenium benzylidenes do not react with strained cycloalkenes and internal olefins, but can effectively catalyze metathesis reactions of terminal dienes. Surprisingly, internal olefins may partake in olefin metathesis reactions once the ruthenium methylidene intermediate has been generated. This unexpected behavior allows the facile formation of strained cis‐cyclooctene by the RCM reaction of 1,9‐undecadiene. Moreover, cis‐1,4‐polybutadiene may be transformed into small cyclic molecules, including its smallest precursor, 1,5‐cyclooctadiene, by the use of this novel sequence. Norbornenes, including the reactive dicyclopentadiene (DCPD), remain unscathed even in the presence of terminal olefin substrates as they are too bulky to approach the diiodo ruthenium methylidene. The experimental results are accompanied by thorough DFT calculations.  相似文献   

5.
Derivatives of the Hoveyda–Grubbs complex bearing S‐, Br‐, I‐, and N‐coordinating naphthalene ligands were synthesized and characterized with NMR and X‐ray studies. Depending on the arrangement of the coordinating sites on the naphthalene core, the isomeric catalysts differ in activity in model metathesis reactions. In particular, complexes with the Ru?CH bond adjacent to the second aromatic ring of the ligand suffer from difficulties experienced on their preparation and initiation. The behavior most probably derives from steric hindrance around the double bond and repulsive intraligand interactions, which result in abnormal chemical shifts of benzylidene protons observed with 1H NMR. Furthermore EXSY studies revealed that the halogen‐chelated ruthenium complexes display an equilibrium, in which major cis‐Cl2 structures are accompanied with small amounts of isomeric forms. In general, contents of the minor forms, measured at 80 °C, correlate with the observed activity trends of the catalysts, although some exceptions complicate the mechanistic picture. We assume that for the family of halogen‐chelated metathesis catalysts the initiation mechanism starts with the cis‐Cl2?trans‐Cl2 isomerization, although further steps may become rate‐limiting for selected systems.  相似文献   

6.
Experimental studies of Hoveyda–Grubbs metathesis catalysts reveal important consequences of substitution at the 6‐position of the chelating benzylidene ligand. The structural modification varies conformational preferences of the ligand that affects its exchange due to the interaction of the coordinating site with the ruthenium center. As a consequence, when typical S‐chelated systems are formed as kinetic trans‐Cl2 products, for 6‐substituted benzylidenes the preference is altered toward direct formation of thermodynamic cis‐Cl2 isomers. Activity data and reactions with tricyclohexylphosphine (PCy3) support also a similar scenario for O‐chelated complexes, which display fast trans‐Cl2?cis‐Cl2 equilibrium observed by NMR EXSY studies. The presented conformational model reveals that catalysts, which cannot adopt the optimal nonchelating conformation of benzylidene ligand, initiate through a high‐energy associative mechanism.  相似文献   

7.
A series of sulfur chelated dormant ruthenium olefin metathesis catalysts is presented. The catalysts prepared were shown to possess the uncommon cis-dichloro arrangement and were mostly inactive at room temperature. By systematically modifying the size of the substituent groups at the chelating sulfur atom, catalyst activity at different temperatures was significantly affected; more bulky substituents fomented activity at lower temperatures. The catalysts were also shown to be stable in solution and retained their catalytic activity even after being exposed to air for two weeks.  相似文献   

8.
For many years, olefin metathesis has been a central topic of industrial and academic research because of its great synthetic utility. The employed initiators cover a wide range of compounds, from simple transition‐metal salts to highly sophisticated and well‐defined alkylidene complexes. Currently, ruthenium‐based catalysts are at the center of attention because of their remarkable tolerance toward oxygen, moisture, and numerous functionalities. This article focuses on recent developments in the field of ring‐opening metathesis polymerization using ruthenium‐based catalysts. ruthenium‐based initiators and their applications to the preparation of advanced polymeric materials are briefly reviewed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2895–2916, 2002  相似文献   

9.
In this account, we provide a brief summary of recent developments in ruthenium‐catalyzed metathesis cascade reactions towards the total synthesis of natural products. We also highlight recent progress from our own laboratory regarding the synthesis of securinega alkaloids and humulanolides, which has resulted in the development of novel ruthenium‐catalyzed metathesis cascade reactions. Inspired and guided by the pioneering and elegant research conducted in this area, we developed a regio‐controlled relay dienyne metathesis cascade reaction and a cyclobutene‐promoted RCM/ROM/RCM cascade reaction for the synthesis of securinega alkaloids and humulanolides, respectively.  相似文献   

10.
Conversion–time data were recorded for various ring‐closing metathesis (RCM) reactions that lead to five‐ or six‐membered cyclic olefins by using different precatalysts of the Hoveyda type. Slowly activated precatalysts were found to produce more RCM product than rapidly activated complexes, but this comes at the price of slower product formation. A kinetic model for the analysis of the conversion–time data was derived, which is based on the conversion of the precatalyst (Pcat) into the active species (Acat), with the rate constant kact, followed by two parallel reactions: 1) the catalytic reaction, which utilizes Acat to convert reactants into products, with the rate kcat, and 2) the conversion of Acat into the inactive species (Dcat), with the rate kdec. The calculations employ two experimental parameters: the concentration of the substrate (c(S)) at a given time and the rate of substrate conversion (?dc(S)/dt). This provides a direct measure of the concentration of Acat and enables the calculation of the pseudo‐first‐order rate constants kact, kcat, and kdec and of kS (for the RCM conversion of the respective substrate by Acat). Most of the RCM reactions studied with different precatalysts are characterized by fast kcat rates and by the kdec value being greater than the kact value, which leads to quasistationarity for Acat. The active species formed during the activation step was shown to be the same, regardless of the nature of different Pcats. The decomposition of Acat occurs along two parallel pathways, a unimolecular (or pseudo‐first‐order) reaction and a bimolecular reaction involving two ruthenium complexes. Electron‐deficient precatalysts display higher rates of catalyst deactivation than their electron‐rich relatives. Slowly initiating Pcats act as a reservoir, by generating small stationary concentrations of Acat. Based on this, it can be understood why the use of different precatalysts results in different substrate conversions in olefin metathesis reactions.  相似文献   

11.
Molybdenum‐, tungsten‐, and ruthenium‐based complexes that control the stereochemical outcome of olefin metathesis reactions have been recently introduced. However, the complementary nature of these systems through their combined use in multistep complex molecule synthesis has not been illustrated. A concise diastereo‐ and enantioselective route that furnishes the anti‐proliferative natural product neopeltolide is now disclosed. Catalytic transformations are employed to address every stereochemical issue. Among the featured processes are an enantioselective ring‐opening/cross‐metathesis promoted by a Mo monoaryloxide pyrrolide (MAP) complex and a macrocyclic ring‐closing metathesis that affords a trisubstituted alkene and is catalyzed by a Mo bis(aryloxide) species. Furthermore, Z‐selective cross‐metathesis reactions, facilitated by Mo and Ru complexes, have been employed in the stereoselective synthesis of the acyclic dienyl moiety of the target molecule.  相似文献   

12.
Electrospray ionization mass spectrometry (ESIMS) and subsequent tandem mass spectrometry (MS/MS) analyses were used to study some important metathesis reactions with the first‐generation ruthenium catalyst 1 , focusing on the ruthenium complex intermediates in the catalytic cycle. In situ cationization with alkali cations (Li+, Na+, K+, and Cs+) using a microreactor coupled directly to the ESI ion source allowed mass spectrometric detection and characterization of the ruthenium species present in solution and particularly the catalytically active monophosphine–ruthenium intermediates present in equilibrium with the respective bisphosphine–ruthenium species in solution. Moreover, the intrinsic catalytic activity of the cationized monophosphine–ruthenium complex 1 a ?K+ was directly demonstrated by gas‐phase reactions with 1‐butene or ethene to give the propylidene Ru species 3 a ?K+ and the methylidene Ru species 4 a ?K+, respectively. Ring‐closing metathesis (RCM) reactions of 1,6‐heptadiene ( 5 ), 1,7‐octadiene ( 6 ) and 1,8‐nonadiene ( 7 ) were studied in the presence of KCl and the ruthenium alkylidene intermediates 8 , 9 , and 10 , respectively, were detected as cationized monophosphine and bisphosphine ruthenium complexes. Acyclic diene metathesis (ADMET) polymerization of 1,9‐decadiene ( 14 ) and ring‐opening metathesis polymerization (ROMP) of cyclooctene ( 18 ) were studied analogously, and the expected ruthenium alkylidene intermediates were directly intercepted from reaction solution and characterized unambiguously by their isotopic patterns and ESIMS/MS. ADMET polymerization was not observed for 1,5‐hexadiene ( 22 ), but the formation of the intramolecularly stabilized monophosphine ruthenium complex 23 a was seen. The ratio of the signal intensities of the respective with potassium cationized monophosphine and bisphosphine alkylidene Ru species varied from [I 4a ]/[I 4 ]=0.02 to [I 23a ]/[I 23 ]=10.2 and proved to be a sensitive and quantitative probe for intramolecular π‐complex formation of the monophosphine–ruthenium species and of double bonds in the alkylidene chain. MS/MS spectra revealed the intrinsic metathesis catalytic activity of the potassium adduct ions of the ruthenium alkylidene intermediates 8 a , 9 a , 10 a , 15 a , and 19 a , but not 23 a by elimination of the respective cycloalkene in the second step of RCM. Computations were performed to provide information about the structures of the alkali metal adduct ions of catalyst 1 and the influence of the alkali metal ions on the energy profile in the catalytic cycle of the metathesis reaction.  相似文献   

13.
Imidazolium salts (NHCewg ? HCl) with electronically variable substituents in the 4,5‐position (H,H or Cl,Cl or H,NO2 or CN,CN) and sterically variable substituents in the 1,3‐position (Me,Me or Et,Et or iPr,iPr or Me,iPr) were synthesized and converted into the respective [AgI(NHC)ewg] complexes. The reactions of [(NHC)RuCl2(CHPh)(py)2] with the [AgI(NHCewg)] complexes provide the respective [(NHC)(NHCewg)RuCl2(CHPh)] complexes in excellent yields. The catalytic activity of such complexes in ring‐closing metathesis (RCM) reactions leading to tetrasubstituted olefins was studied. To obtain quantitative substrate conversion, catalyst loadings of 0.2–0.5 mol % at 80 °C in toluene are sufficient. The complex with the best catalytic activity in such RCM reactions and the fastest initiation rate has an NHCewg group with 1,3‐Me,iPr and 4,5‐Cl,Cl substituents and can be synthesized in 95 % isolated yield from the ruthenium precursor. To learn which one of the two NHC ligands acts as the leaving group in olefin metathesis reactions two complexes, [(FL‐NHC)(NHCewg)RuCl2(CHPh)] and [(FL‐NHCewg)(NHC)RuCl2(CHPh)], with a dansyl fluorophore (FL)‐tagged electron‐rich NHC ligand (FL‐NHC) and an electron‐deficient NHC ligand (FL‐NHCewg) were prepared. The fluorescence of the dansyl fluorophore is quenched as long as it is in close vicinity to ruthenium, but increases strongly upon dissociation of the respective fluorophore‐tagged ligand. In this manner, it was shown for ring‐opening metathesis ploymerization (ROMP) reactions at room temperature that the NHCewg ligand normally acts as the leaving group, whereas the other NHC ligand remains ligated to ruthenium.  相似文献   

14.
The synthesis and characterization of a series of isocyanate‐ and isothiocyanate‐derived second generation Grubbs–Hoveyda‐type ruthenium–alkylidene complexes, that is, [Ru(N?C?O)2(IMesH2)(?CH‐2‐(2‐PrO)‐C6H4)] ( 1 ), [Ru(N?C?O)2(1,3‐dimesityl‐3,4,5,6‐tetrahydropyrimidin‐2‐ylidene)(=CH‐2‐(2‐PrO)‐C6H4)] ( 2 ), [Ru(N?C?S)2(IMesH2)(?CH‐2‐(2‐PrO)‐C6H4)] ( 3 ), and [Ru(N?C?S)2(1,3‐dimesityl‐3,4,5,6‐tetrahydropyrimidin‐2‐ylidene)(?CH‐2‐(2‐PrO)‐C6H4)] ( 4 ), and their activity in various metathesis reactions are described. Compounds 1 – 4 were prepared by reaction of the parent complexes [RuCl2(IMesH2)(?CH‐2‐(2‐PrO)C6H4)] ( 5 ) (IMesH2=1,3‐bis‐(2,4,6‐trimethylphenyl)‐4,5‐dihydroimidazol‐2‐ylidene) and [RuCl2(1,3‐dimesityl‐3,4,5,6‐tetrahydropyrimidin‐2‐ylidene)(?CH‐2‐(2‐PrO)‐C6H4)] ( 6 ) with silver cyanate and thiocyanate, respectively. The X‐ray structure of 1 was determined, confirming the isocyanate‐type bonding of the ligand. The isothiocyanate‐type bonding in 3 and 4 was unambiguously confirmed by IR and 13C NMR spectroscopy. The isocyanate‐derived complexes 1 and 2 were found to be excellent catalysts for the ring‐opening metathesis polymerization (ROMP) of cis‐cycloocta‐1,5‐diene (COD). Both 1 and 2 yielded poly(COD) with a trans‐content of about 80 %. First‐order kinetics with unprecedentedly high rate constants of polymerization (kp=0.068 and 0.26 s?1, respectively) were observed. Compounds 3 and 4 were also active initiators for the ROMP of COD, however, they generated poly(COD) with a cis‐content of 80 and 67 %, respectively. Complexes 1 and 2 also showed good catalytic activity in cross‐metathesis (CM) reactions. Finally, 1 – 4 were also found to be excellent catalysts for the regioselective cyclopolymerization of diethyl 2,2‐dipropargylmalonate (DEDPM), resulting in poly(DEDPM) almost entirely based on five‐membered repeat units, that is, cyclopent‐1‐ene‐1,2‐vinylenes.  相似文献   

15.
Olefin cross metathesis is a particularly powerful transformation that has been exploited extensively for the formation of complex products. Until recently, however, constructing Z‐olefins using this methodology was not possible. With the discovery and development of three families of ruthenium‐based Z‐selective catalysts, the formation of Z‐olefins using metathesis is now not only possible but becoming increasingly prevalent in the literature. In particular, ruthenium complexes containing cyclometalated NHC architectures developed in our group have been shown to catalyze various cross metathesis reactions with high activity and, in most cases, near perfect selectivity for the Z‐isomer. The types of cross metathesis reactions investigated thus far are presented here and explored in depth.  相似文献   

16.
A sulfur‐chelated photolatent ruthenium olefin metathesis catalyst has been equipped with supersilyl protecting groups on the N‐heterocyclic carbene ligand. The silyl groups function as an irreversible chromatic kill switch, thus decomposing the catalyst when it is irradiated with 254 nm UV light. Therefore, different types of olefin metathesis reactions may be started by irradiation with 350 nm UV light and prevented by irradiation with shorter wavelengths. The possibility to induce and impede catalysis just by using light of different frequencies opens the pathway for stereolithographic applications and novel light‐guided chemical sequences.  相似文献   

17.
Eight new N‐Hoveyda‐type complexes were synthesized in yields of 67–92 % through reaction of [RuCl2(NHC)(Ind)(py)] (NHC=1,3‐bis(2,4,6‐trimethylphenylimidazolin)‐2‐ylidene (SIMes) or 1,3‐bis(2,6‐diisopropylphenylimidazolin)‐2‐ylidene (SIPr), Ind=3‐phenylindenylid‐1‐ene, py=pyridine) with various 1‐ or 1,2‐substituted ferrocene compounds with vinyl and amine or imine substituents. The redox potentials of the respective complexes were determined; in all complexes an iron‐centered oxidation reaction occurs at potentials close to E=+0.5 V. The crystal structures of the reduced and of the respective oxidized Hoveyda‐type complexes were determined and show that the oxidation of the ferrocene unit has little effect on the ruthenium environment. Two of the eight new complexes were found to be switchable catalysts, in that the reduced form is inactive in the ring‐opening metathesis polymerization of cis‐cyclooctene (COE), whereas the oxidized complexes produce polyCOE. The other complexes are not switchable catalysts and are either inactive or active in both reduced and oxidized states.  相似文献   

18.
Novel water‐soluble ruthenium carbene complexes with finely tuned structure and properties in solution are reported. These ruthenium‐based initiators were found to exhibit great catalytic activity in aqueous miniemulsion ring‐opening metathesis polymerization of norbornene. Stable particles of polynorbornene could be generated in the 200–250 nm size range stabilized with a nonionic surfactant (polystyrene‐b‐poly(ethylene oxide)). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2784–2793, 2006  相似文献   

19.
A gas‐phase comparison of intrinsic olefin metathesis rates for (carbene)ruthenium complexes by means of electrospray‐ionization tandem mass spectrometry reveals a reversal of the reactivity trends observed in solution. The solution‐phase ordering of reactivity is accordingly attributed to a more favorable pre‐equilibrium, producing the metathesis‐active species in the case of the Hofmann‐ and Werner‐type complexes relative to those of the Grubbs type.  相似文献   

20.
We synthesized the first N‐heterocyclic carbene (NHC) complexes of Schrock’s molybdenum imido alkylidene bis(triflate) complexes. Unlike existing bis(triflate) complexes, the novel 16‐electron complexes represent metathesis active, functional‐group‐tolerant catalysts. Single‐crystal X‐ray structures of two representatives of this novel class of Schrock catalysts are presented and reactivity is discussed in view of their structural peculiarities. In the presence of monomer (substrate), these catalysts form cationic species and can be employed in ring‐closing metathesis (RCM), ring‐opening metathesis polymerization (ROMP), as well as in the cyclopolymerization of α,ω‐diynes. Monomers containing functional groups, which are not tolerated by the existing variations of Schrock’s catalyst, e.g., sec‐amine, hydroxy, and carboxylic acid moieties, can be used. These catalysts therefore hold great promise in both organic and polymer chemistry, where they allow for the use of protic monomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号