首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The glutamine binding protein (GlnBP) binds l ‐glutamine and cooperates with its cognate transporters during glutamine uptake. Crystal structure analysis has revealed an open and a closed conformation for apo‐ and holo‐GlnBP, respectively. However, the detailed conformational dynamics have remained unclear. Herein, we combined NMR spectroscopy, MD simulations, and single‐molecule FRET techniques to decipher the conformational dynamics of apo‐GlnBP. The NMR residual dipolar couplings of apo‐GlnBP were in good agreement with a MD‐derived structure ensemble consisting of four metastable states. The open and closed conformations are the two major states. This four‐state model was further validated by smFRET experiments and suggests the conformational selection mechanism in ligand recognition of GlnBP.  相似文献   

2.
3.
Transition between conformational states in proteins is being recognized as a possible key factor of function. In support of this, hidden dynamic NMR structures were detected in several cases up to populations of a few percent. Here, we show by two‐ and three‐state analysis of thermal unfolding, that the population of hidden states may weight 20–40 % at 298 K in a disulfide‐rich protein. In addition, sensitive 15N‐CEST NMR experiments identified a low populated (0.15 %) state that was in slow exchange with the folded PAF protein. Remarkably, other techniques failed to identify the rest of the NMR “dark matter”. Comparison of the temperature dependence of chemical shifts from experiments and molecular dynamics calculations suggests that hidden conformers of PAF differ in the loop and terminal regions and are most similar in the evolutionary conserved core. Our observations point to the existence of a complex conformational landscape with multiple conformational states in dynamic equilibrium, with diverse exchange rates presumably responsible for the completely hidden nature of a considerable fraction.  相似文献   

4.
The folding behaviors and mechanisms of large multidomain proteins have remained largely uncharacterized, primarily because of the lack of appropriate research methods. To address these limitations, novel mechanical folding probes have been developed that are based on antiparallel coiled‐coil polypeptides. Such probes can be conveniently inserted at the DNA level, at different positions within the protein of interest where they minimally disturb the host protein structure. During single‐molecule force spectroscopy measurements, the forced unfolding of the probe captures the progress of the unfolding front through the host protein structure. This novel approach allows unfolding pathways of large proteins to be directly identified. As an example, this probe was used in a large multidomain protein with ten identical ankyrin repeats, and the unfolding pathway, its direction, and the order of sequential unfolding were unequivocally and precisely determined. This development facilitates the examination of the folding pathways of large proteins, which are predominant in the proteasomes of all organisms, but have thus far eluded study because of the technical limitations encountered when using traditional techniques.  相似文献   

5.
6.
The influence of charged side chains on the folding-unfolding equilibrium of beta-peptides was investigated by means of molecular dynamics simulations. Four different peptides containing only negatively charged side chains, positively charged side chains, both types of charged side chains (with the ability to form stabilizing salt bridges) or no charged side chains were studied under various conditions (different simulation temperatures, starting structures and solvent environment). The NMR solution structure in methanol of one of the peptides (A) has already been published; the synthesis and NMR analysis of another peptide (B) is described here. The other peptides (C and D) studied herein have hitherto not been synthesized. All four peptides A-D are expected to adopt a left-handed 3(14)-helix in solution as well as in the simulations. The resulting ensembles of structures were analyzed in terms of conformational space sampled by the peptides, folding behavior, structural properties such as hydrogen bonding, side chain-side chain and side chain-backbone interactions and in terms of the level of agreement with the NMR data available for two of the peptides. It was found that the presence of charged side chains significantly slows down the folding process in methanol solution due to the stabilization of intermediate conformers with side chain-backbone interactions. In water, where the solvent competes with the solute-solute polar interactions, the folding process to the 3(14)-helix is faster in the simulations.  相似文献   

7.
The 20 residue long Trp‐cage is the smallest protein known, and thus has been the subject of several in vitro and in silico folding studies. Here, we report the multistate folding scenario of the miniprotein in atomic detail. We detected and characterized different intermediate states by temperature dependent NMR measurements of the 15N and 13C/15N labeled protein, both at neutral and acidic pH values. We developed a deconvolution technique to characterize the invisible—fully folded, unfolded and intermediate—fast exchanging states. Using nonlinear fitting methods we can obtain both the thermodynamic parameters (ΔHF–I, TmF–I, ΔCpF–I and ΔHI–U, TmI–U, ΔCpI–U) and the NMR chemical shifts of the conformers of the multistate unfolding process. During the unfolding of Trp‐cage distinct intermediates evolve: a fast‐exchanging intermediate is present under neutral conditions, whereas a slow‐exchanging intermediate‐pair emerges at acidic pH. The fast‐exchanging intermediate has a native‐like structure with a short α‐helix in the G11–G15 segment, whereas the slow‐exchanging intermediate‐pair presents elevated dynamics, with no detectable native‐like residue contacts in which the G11? P12 peptide bond has either cis or trans conformation. Heteronuclear relaxation studies combined with MD simulations revealed the source of backbone mobility and the nature of structural rearrangements during these transitions. The ability to detect structural and dynamic information about folding intermediates in vitro provides an excellent opportunity to gain new insights into the energetic aspects of the energy landscape of protein folding. Our new experimental data offer exceptional testing ground for further computational simulations.  相似文献   

8.
Aptides, a novel class of high‐affinity peptides, recognize diverse molecular targets with high affinity and specificity. The solution structure of the aptide APT specifically bound to fibronectin extradomain B (EDB), which represents an unusual protein–protein interaction that involves coupled unfolding and binding, is reported. APT binding is accompanied by unfolding of the C‐terminal β strand of EDB, thereby permitting APT to interact with the freshly exposed hydrophobic interior surfaces of EDB. The β‐hairpin scaffold of APT drives the interaction by a β‐strand displacement mechanism, such that an intramolecular β sheet is replaced by an intermolecular β sheet. The unfolding of EDB perturbs the tight domain association between EDB and FN8 of fibronectin, thus highlighting its potential use as a scaffold that switches between stretched and bent conformations.  相似文献   

9.
Post‐translational N‐glycosylation of proteins is ubiquitous in eukaryotic cells, and has been shown to influence the thermodynamics of protein collapse and folding. However, the mechanism for this influence is not well understood. All‐atom molecular dynamics simulations are carried out to study the collapse of a peptide linked to a single N‐glycan. The glycan is shown to perturb the local water hydrogen‐bonding network, rendering it less able to solvate the peptide and thus enhancing the hydrophobic contribution to the free energy of collapse. The enhancement of the hydrophobic collapse compensates for the weakened entropic coiling due to the bulky glycan chain and leads to a stronger burial of hydrophobic surface, presumably enhancing folding. This conclusion is reinforced by comparison with coarse‐grained simulations, which contain no explicit solvent and correspondingly exhibit no significant thermodynamic changes on glycosylation.  相似文献   

10.
11.
12.
Photoswitchable azobenzene cross‐linkers can control the folding and unfolding of peptides by photoisomerization and can thus regulate peptide affinities and enzyme activities. Using quantum mechanics/molecular mechanics (QM/MM) methods and classical MM force fields, we report the first molecular dynamics simulations of the photoinduced folding and unfolding processes in the azobenzene cross‐linked FK‐11 peptide. We find that the interactions between the peptide and the azobenzene cross‐linker are crucial for controlling the evolution of the secondary structure of the peptide and responsible for accelerating the folding and unfolding events. They also modify the photoisomerization mechanism of the azobenzene cross‐linker compared with the situation in vacuo or in solution.  相似文献   

13.
We show that the prediction of 15N relaxation rates in proteins can be extended to systems with anisotropic global rotational diffusion by using a network of coupled rotators (NCR), starting from a three‐dimensional structure. The relaxation rates predicted by this method are confronted in several examples with experiments performed by other groups. The NCR spectral density functions are compared with the results obtained from reduced spectral density mapping. The consequence of the timescales of internal motions on the predicted relaxation rates and the effects of the predicted local anisotropy—present only in the case of anisotropic overall tumbling—on dynamic parameters, are discussed.  相似文献   

14.
This report examines the effect of a decrease in solvent viscosity on the simulated folding behaviour of a β‐peptide heptamer in methanol. Simulations of the molecular dynamics of the heptamer H‐β3‐HVal‐β3‐HAla‐β3‐HLeu‐(S,S)‐β3‐HAla(αMe)‐β3‐HVal‐β3‐HAla‐β3‐HLeu‐OH in methanol, with an explicit representation of the methanol molecules, were performed for 80 ns at various solvent viscosities. The simulations indicate that at a solvent viscosity of one third of that of methanol, only the dynamic aspects of the folding process are altered, and that the rate of folding is increased. At a viscosity of one tenth of that of methanol, insufficient statistics are obtained within the 80 ns period. We suggest that 80 ns is an insufficient time to reach conformational equilibrium at very low viscosity because the dependence of the folding rate of a β‐peptide on solvent viscosity has two regimes; a result that was observed in another computational study for α‐peptides.  相似文献   

15.
16.
Short peptides that fold into β‐hairpins are ideal model systems for investigating the mechanism of protein folding because their folding process shows dynamics typical of proteins. We performed folding, unfolding, and refolding molecular dynamics simulations (total of 2.7 μs) of the 10‐residue β‐hairpin peptide chignolin, which is the smallest β‐hairpin structure known to be stable in solution. Our results revealed the folding mechanism of chignolin, which comprises three steps. First, the folding begins with hydrophobic assembly. It brings the main chain together; subsequently, a nascent turn structure is formed. The second step is the conversion of the nascent turn into a tight turn structure along with interconversion of the hydrophobic packing and interstrand hydrogen bonds. Finally, the formation of the hydrogen‐bond network and the complete hydrophobic core as well as the arrangement of side‐chain–side‐chain interactions occur at approximately the same time. This three‐step mechanism appropriately interprets the folding process as involving a combination of previous inconsistent explanations of the folding mechanism of the β‐hairpin, that the first event of the folding is formation of hydrogen bonds and the second is that of the hydrophobic core, or vice versa.  相似文献   

17.
Connecting experimental observables with the underlying conformational ensemble is a long-standing problem in the structure determination of biomolecules. The simulations described in this article attempt to resolve a seeming discrepancy between the conformational features derived from measured NOE intensities, (3)J-coupling constants, and circular dichroism (CD) spectra for two β-peptides differing in a linker between two side-chains. Although both peptides are very similar in terms of the r(-6) averaged distances between atom pairs involved in the observed NOEs, the molecular dynamics trajectories suggest why the CD spectra show a greater 3(14)-helical propensity for the linked, cyclic peptide than for the linear one, whereas slightly more NMR NOE peaks are observed and assigned for the latter. The nine 100 ns unrestrained simulations show better agreement with the observed experimental data than the single conformations derived from the published NMR structures by additional energy minimization with the GROMOS force field. They show why the seemingly contradictory quantities obtained by NMR and CD spectroscopy can arise from a single conformational ensemble.  相似文献   

18.
19.
Essential understanding : Elucidation of structural requirements and interactions of antimicrobial peptides with lipopolysaccharide (LPS) are essential to understand the mechanism of action of antimicrobial peptides. The highly active antimicrobial peptide MSI‐594 (see figure for electrostatic potential surface) acquires a novel helical hairpin structure in complex with LPS. The structure and interactions of MSI‐594 with LPS presented here provide important insights into the mechanism of outer membrane permeabilization by antimicrobial peptides.

  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号