首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A highly enantioselective hetero‐Diels–Alder reaction of Danishefsky’s diene with α‐ketoesters and isatins has been realized by using a chiral N,N′‐dioxide/MgII complex. In the presence of only 0.1–0.5 mol % catalyst, a series of substrates were transformed into the corresponding tetrasubstituted 2,3‐dihydropyran‐4‐ones in up to 99 % yield and more than 99 % ee in two hours.  相似文献   

4.
Organocatalysis has emerged as an effective strategy for chemical synthesis. Within this area, phosphine‐catalyzed coupling reactions have attracted considerable attention because of their versatility and wide range of applications in the construction of new C?C bonds. Recently, various experimental studies on the phosphine‐catalyzed coupling reaction of allenes have been reported, and mechanistic and computational studies have also progressed considerably. As a nucleophile, phosphine can react with an allene to form a zwitterionic phosphoniopropenide intermediate. After stepwise cycloaddition and proton transfer, the phosphine catalyst can be regenerated by C?P bond cleavage. Alternatively, the zwitterionic phosphoniopropenide intermediate could also be protonated by a Brønsted acid to generate a phosphonium intermediate, which can be used to construct new C?C bonds by electrophilic addition. In this review, we have summarized details of mechanistic studies of phosphine‐catalyzed allene coupling reactions that follow these two reaction modes. In addition to detailing the reaction pathway, the regioselectivity and diastereoselectivity of the phosphine‐catalyzed allene coupling reaction are also discussed in this review.  相似文献   

5.
Breaking barriers : In agreement with experimental evidence, it was found by means of high‐level DFT calculations that the Cr(CO)3 metal fragment considerably reduces the reaction energy barrier—for both the concerted and stepwise reaction mechanisms (see graphic)—of the Diels–Alder reaction of butadiene on (5,5) carbon nanotubes.

  相似文献   


6.
The reaction mechanism and regioselectivity of the Diels–Alder reactions of C68 and Sc3N@C68, which violate the isolated pentagon rule, were studied with density functional theory calculations. For C68, the [5,5] bond is the most favored thermodynamically, whereas the cycloaddition on the [5,6] bond has the lowest activation energy. Upon encapsulation of the metallic cluster, the exohedral reactivity of Sc3N@C68 is reduced remarkably owing to charge transfer from the cluster to the fullerene cage. The [5,5] bond becomes the most reactive site thermodynamically and kinetically. The bonds around the pentagon adjacency show the highest chemical reactivity, which demonstrates the importance of pentagon adjacency. Furthermore, the viability of Diels–Alder cycloadditions of several dienes and Sc3N@C68 was examined theoretically. o‐Quinodimethane is predicted to react with Sc3N@C68 easily, which implies the possibility of using Diels–Alder cycloaddition to functionalize Sc3N@C68.  相似文献   

7.
A new type of dendritic NOBIN derived Schiff base ligands has been synthesized and applied to titanium catalyzed hetero-Diels-Alder reaction of Danigheifsky‘ s diene and aldehydes, affording the corresponding 2-substituted 2,3-dihydro-4H-pyran-4-one in good yields and moderate enantioselectivities (up to 59.2% ee). It was found that the size of dendron attached to the tridentated ligands has slight impact on the enantioselectivtty of the reaction and the second generation of dendritic ligand exhibited the best enantioselectivity.  相似文献   

8.
《化学:亚洲杂志》2017,12(17):2142-2159
Inverse‐electron‐demand Diels–Alder (iEDDA) reactions are an intriguing class of cycloaddition reactions that have attracted increasing attention for their application in bioorthogonal chemistry, the total synthesis of natural products, and materials science. In many cases, the application of the iEDDA reaction has been demonstrated as an innovative approach to achieve target structures. The theoretical aspects of this class of reactions are of particular interest for scientists as a means to understand the various factors, such as steric strain and electron density of the attached groups, that govern the reaction and thus to elucidate the reaction mechanism. This review aims to summarize both theoretical investigations and application‐driven research work on the iEDDA reaction. First, the historical aspects and the theoretical basis of the reaction, especially recent advances in time‐dependent density functional theory (TD‐DFT) calculations, as well as catalysis strategies will be highlighted and discussed. Second, the applications of this novel reaction in the context of materials science, bioorthogonal chemistry, and total synthesis of natural products will be elaborated with selected recent examples. The challenges and opportunities of the iEDDA reaction will be highlighted to give more insight into its potential applications in many other research areas.  相似文献   

9.
A new protocol for the synthesis of a variety of N‐containing aromatic heterocycles by a formal gold‐catalyzed dehydro‐Diels–Alder reaction of ynamide derivatives has been developed. Deuterium‐labeling experiments and kinetic studies support the involvement of a dual gold catalysis mechanism in which a gold acetylide moiety adds onto an aurated keteneiminium.  相似文献   

10.
Highly enantioselective Diels–Alder (DA) and inverse‐electron‐demand hetero‐Diels–Alder (HDA) reactions of β,γ‐unsaturated α‐ketoesters with cyclopentadiene catalyzed by chiral N,N′‐dioxide–Cu(OTf)2 (Tf=triflate) complexes have been developed. Quantitative conversion of β,γ‐unsaturated α‐ketoesters and excellent diastereoselectivities (up to 99:1) and enantioselectivities (up to >99 % ee) were observed for a broad range of substrates. Both aromatic and aliphatic β,γ‐unsaturated α‐ketoesters were found to be suitable substrates for the reactions. Moreover, the chemoselectivity of the DA and HDA adducts were improved by regulating the reaction temperature. Good to high chemoselectivity (up to 94 %) of the DA adducts were obtained at room temperature, and moderate chemoselectivity (up to 65 %) of the HDA adducts were achieved at low temperature. The reaction also featured mild reaction conditions, a simple procedure, and remarkably low catalyst loading (0.1–1.5 mol %). A strong positive nonlinear effect was observed.  相似文献   

11.
The mechanism and the origin of selectivity of the asymmetric Strecker reaction catalyzed by a TiIV‐complex catalyst generated from a cinchona alkaloid, achiral substituted 2,2′‐biphenol, and tetraisopropyl titanate have been investigated by DFT and ONIOM methods. The calculations indicate that the reaction proceeds through a dual activation mechanism, in which TiIV acts as Lewis acid to activate the electrophile aldimine substrate, whereas the tertiary amine in cinchona alkaloid works as Lewis base to promote the activation and isomerization of HCN. The C? C bond formation step is predicted to be the selectivity‐controlling step in the reaction with an energy barrier of 9.3 kcal mol?1. The “asymmetric activation” is achieved by the transfer of asymmetry from the chiral cinchonine ligand to the axially flexible achiral biphenol ligand through coordination interaction with the central metal TiIV. The large steric hindrance from the 3,3′‐position substitute of biphenol, combined with the quinoline fragment of cinchona alkaloid and the orientation of hydrogen bonding of iPrOH, play a key role in controlling the stereoselectivity, which is in good agreement with the experimental observations.  相似文献   

12.
A protocol to access useful 4‐aminopyrrolidine‐2,4‐dicarboxylate derivatives has been developed. A variety of chiral N,O‐ligands derived from 2,3‐dihydroimidazo[1,2‐a]pyridine motifs have been evaluated in the asymmetric 1,3‐dipolar cycloaddition of azomethine ylides to α‐phthalimidoacrylates. Reactions catalyzed by copper in combination with ligand 7‐Cl‐DHIPOH provided the highest level of stereoselectivity for the 1,3‐dipolar cycloaddition reaction. The reaction tolerates both β‐substituted and β‐unsubstituted α‐phthalimidoacrylate as dipolarophiles, affording the corresponding quaternary 4‐aminopyrrolidine cycloadducts with excellent diastereo‐ (>98:2 d.r.) and enantioselectivities (up to 97 % ee). Removal of the phthalimido protecting group can be accomplished by a simple NaBH4 reduction. Theoretical calculations employing DFT methods show this cycloaddition reaction is likely to proceed through a stepwise mechanism and the stereochemistry was also theoretically rationalized.  相似文献   

13.
14.
15.
16.
An efficient enantioselective construction of tetrahydronaphthalene‐1,4‐diones as well as dihydronaphthalene‐1,4‐diols by a chiral phosphoric acid catalyzed quinone Diels–Alder reaction with dienecarbamates is reported. The nature of the protecting group on the diene is key to the success of achieving high enantioselectivity. The divergent “redox” selectivity is controlled by using an adequate amount of quinones. Reversible redox switching without erosion of enantioselectivity was possible from individual redox isomers.  相似文献   

17.
Ni‐catalyzed cross‐coupling of unactivated secondary alkyl halides with alkylboranes provides an efficient way to construct alkyl–alkyl bonds. The mechanism of this reaction with the Ni/ L1 ( L1 =transN,N′‐dimethyl‐1,2‐cyclohexanediamine) system was examined for the first time by using theoretical calculations. The feasible mechanism was found to involve a NiI–NiIII catalytic cycle with three main steps: transmetalation of [NiI( L1 )X] (X=Cl, Br) with 9‐borabicyclo[3.3.1]nonane (9‐BBN)R1 to produce [NiI( L1 )(R1)], oxidative addition of R2X with [NiI( L1 )(R1)] to produce [NiIII( L1 )(R1)(R2)X] through a radical pathway, and C? C reductive elimination to generate the product and [NiI( L1 )X]. The transmetalation step is rate‐determining for both primary and secondary alkyl bromides. KOiBu decreases the activation barrier of the transmetalation step by forming a potassium alkyl boronate salt with alkyl borane. Tertiary alkyl halides are not reactive because the activation barrier of reductive elimination is too high (+34.7 kcal mol?1). On the other hand, the cross‐coupling of alkyl chlorides can be catalyzed by Ni/ L2 ( L2 =transN,N′‐dimethyl‐1,2‐diphenylethane‐1,2‐diamine) because the activation barrier of transmetalation with L2 is lower than that with L1 . Importantly, the Ni0–NiII catalytic cycle is not favored in the present systems because reductive elimination from both singlet and triplet [NiII( L1 )(R1)(R2)] is very difficult.  相似文献   

18.
The mechanism and enantioselectivity of the asymmetric Baeyer–Villiger oxidation reaction between 4‐phenylcyclohexanone and m‐chloroperoxobenzoic acid ( m ‐CPBA ) catalyzed by ScIIIN,N′‐dioxide complexes were investigated theoretically. The calculations indicated that the first step, corresponding to the addition of m ‐CPBA to the carbonyl group of 4‐phenylcyclohexanone, is the rate‐determining step (RDS) for all the pathways studied. The activation barrier of the RDS for the uncatalyzed reaction was predicted to be 189.8 kJ mol?1. The combination of an ScIIIN,N′‐dioxide complex and the m ‐CBA molecule can construct a bifunctional catalyst in which the Lewis acidic ScIII center activates the carbonyl group of 4‐phenylcyclohexanone while m ‐CBA transfers a proton, which lowers the activation barrier of the addition step (RDS) to 86.7 kJ mol?1. The repulsion between the m‐chlorophenyl group of m ‐CPBA and the 2,4,6‐iPr3C6H2 group of the N,N′‐dioxide ligand, as well as the steric hindrance between the phenyl group of 4‐phenylcyclohexanone and the amino acid skeleton of the N,N′‐dioxide ligand, play important roles in the control of the enantioselectivity.  相似文献   

19.
The mechanisms of the photochemical isomerization reactions were investigated theoretically by using a model system of 1,2‐dihydro‐1,2‐azaborine with the CAS(6,6)/6‐311G(d,p) and MP2‐CAS‐(6,6)/6‐311++G(3df,3pd)//CAS(6,6)/6‐311G(d,p) methods. Three reaction pathways, which lead to three kinds of photoisomers, have been examined. The structures of the conical intersections, which play a decisive role in such photorearrangements, were obtained. The thermal (or dark) reactions of the reactant species have also been examined by using the same level of theory to assist in providing a qualitative explanation of the reaction pathways. The model investigations suggest that the preferred reaction route for 1,2‐dihydro‐1,2‐azaborine, which leads to the Dewar 1,2‐dihydro‐1,2‐azaborine photoproduct, is as follows: reactant→Franck–Condon region→conical intersection→photoproduct. The results obtained allow a number of predictions to be made.  相似文献   

20.
Intramolecular Diels–Alder (IMDA) transition structures (TSs) and energies have been computed at the B3LYP/6‐31+G(d) and CBS‐QB3 levels of theory for a series of 1,3,8‐nonatrienes, H2C?CH? CH?CH? CH2? X? Z? CH?CH2 [? X? Z? =? CH2? CH2? ( 1 ); ? O? C(?O)? ( 2 ); ? CH2? C(?O)? ( 3 ); ? O? CH2? ( 4 ); ? NH? C(?O)? ( 5 ); ? S? C(?O)? ( 6 ); ? O? C(?S)? ( 7 ); ? NH? C(?S)? ( 8 ); ? S? C(?S)? ( 9 )]. For each system studied ( 1 – 9 ), cis‐ and trans‐TS isomers, corresponding, respectively, to endo‐ and exo‐positioning of the ? C? X? Z? tether with respect to the diene, have been located and their relative energies (ErelTS) employed to predict the cis/trans IMDA product ratio. Although the ErelTS values are modest (typically <3 kJ mol?1), they follow a clear and systematic trend. Specifically, as the electronegativity of the tether group X is reduced (X?O→NH or S), the IMDA cis stereoselectivity diminishes. The predicted stereochemical reaction preferences are explained in terms of two opposing effects operating in the cis‐TS, namely (1) unfavorable torsional (eclipsing) strain about the C4? C5 bond, that is caused by the ? C? X? C(?Y)? group’s strong tendency to maintain local planarity; and (2) attractive electrostatic and secondary orbital interactions between the endo‐(thio)carbonyl group, C?Y, and the diene. The former interaction predominates when X is weakly electronegative (X?N, S), while the latter is dominant when X is more strongly electronegative (X?O), or a methylene group (X?CH2) which increases tether flexibility. These predictions hold up to experimental scrutiny, with synthetic IMDA reactions of 1 , 2 , 3 , and 4 (published work) and 5 , 6 , and 8 (this work) delivering ratios close to those calculated. The reactions of thiolacrylate 5 and thioamide 8 represent the first examples of IMDA reactions with tethers of these types. Our results point to strategies for designing tethers, which lead to improved cis/trans‐selectivities in IMDAs that are normally only weakly selective. Experimental verification of the validity of this claim comes in the form of fumaramide 14 , which undergoes a more trans‐selective IMDA reaction than the corresponding ester tethered precursor 13 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号