首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel mesoporous SBA-16 type of hybrids TTA-S16 and DBM-S16 were synthesized by co-condensation of modified β-diketone (TTA-Si and DBM-Si, DBM=1,3-diphenyl-1,3- propanepione, TTA=2-thenoyltrifluoroacetone) and tetraethoxysilane (TEOS) in the presence of Pluronic F127 as template, which were confirmed by FTIR, XRD, 29Si CP-MAS NMR, and N2 adsorption measurements. Novel organic-inorganic mesoporous luminescent hybrid containing RE3+ (Eu3+, Tb3+) complexes covalently attached to the functionalized ordered mesoporous SBA-16 (TTA-S16 and DBM-S16), which were designated as bpy-RE-TTA-S16 and bpy-RE-DBM-S16, were obtained by sol-gel process. The luminescence properties of these resulting materials were characterized in detail, and the results reveal that mesoporous hybrid material bpy-Eu-TTA-S16 present stronger luminescent intensities, longer lifetimes, and higher luminescent quantum efficiencies than the corresponding DBM-containing materials bpy-Eu-DBM-S16, while bpy-Tb-DBM-S16 exhibit the stronger characteristic emission of Tb3+ and longer lifetime than the corresponding TTA-containing materials bpy-Tb-TTA-S16.  相似文献   

2.
A novel series of luminescent mesoporous organic-inorganic hybrid materials has been prepared by linking Eu3+ complexes to the functionalized ordered mesoporous SBA-15 which was synthesis by a co-condensation process of 1,3-diphenyl-1,3-propanepione (DBM) modified by the coupling agent 3-(triethoxysilyl)-propyl isocyanate (TEPIC), tetraethoxysilane (TEOS), Pluronic P123 surfactant as a template. It was demonstrated that the efficient intramolecular energy transfer in the mesoporous material Eu(DBMSi-SBA-15)3phen mainly occurred between the modified DBM (named as DBM-Si) and the central Eu3+ ion. So the Eu(DBMSi-SBA-15)3phen showed characteristic emission of Eu3+ ion under UV irradiation with higher luminescence quantum efficiency. Moreover, the mesoporous hybrid materials exhibited excellent thermal stability as the lanthanide complex was covalently bonded to the mesoporous matrix.  相似文献   

3.
Three kinds of novel macrocylic calix[4]arene derivatives functionalized SBA-15 type of mesoporous hybrids (Calix-S15, Calix-NO(2)-S15 and Calix-NH(2)-S15) are synthesized by co-condensation of tetraethoxysilane (TEOS) and modified organic ligand (Calix-Si, Calix-NO(2)-Si and Calix-NH(2)-Si) in the presence of Pluronic P123 surfactant as a template. The structural preservation of these three parent materials is confirmed by FTIR spectra, (29)Si MAS NMR spectra, XRD pattern, and N(2) adsorption-desorption measurements. The ternary mesoporous luminescent hybrids containing Ln(3+) (Eu(3+), Tb(3+)) complexes covalently attached to the functionalized ordered mesoporous SBA-15, which are designated as Ln(Calix-S15)phen, Ln(Calix-NO(2)-S15)phen and Ln(Calix-NH(2)-S15)phen, are obtained by introducing lanthanide ions and 1,10-phenanroline into the corresponding parent material via covalent bond assembling methods. XRD pattern, TEM and N(2) adsorption-desorption measurements are employed to characterize the mesostrcture of the resulting lanthanide mesoporous hybrids. The photoluminescent behavior (luminescence, lifetime, quantum efficiency, and energy transfer) for these chemically bonded mesoporous hybrids is studied in detail. Also, their quantum efficiencies are determined, which indicates that the different mesoporous hybrid material systems derived from different functionalized calix[4]arene derivative bridges present different luminescence behavior.  相似文献   

4.
A special multifunctional ionic liquid compound (1‐methyl‐3‐(2‐(thiocarboxyoxy)‐ethyl)‐2H‐imidazole‐1,3‐diium bromide (SHIL)) is used as the chemical bridge to link lanthanide beta‐diketonates and polymer resin, which are designated as Ln(L)4‐SHIL‐WR/MR (Ln = Eu, Tb, Sm; L = thenoyltrifluoroacetonate (TTA), acetylacetonate (AA), dibenzoylmethane (DBM); WR = Wang resin, MR = Merrifield resin). Among SHIL and polymer resin are assembled to form covalently bonded system through condensation reaction. Then tetrakis lanthanide beta‐diketonates are linked to SHIL through ion‐exchange reaction. Physical characterization and especially the photoluminescent performance of the multicomponent hybrids are studied. The hybrid materials possess good stability and excellent luminescent property. The results provide useful path to obtain luminescent hybrids for further practical application.  相似文献   

5.
Bismuth (Bi)‐containing SBA‐15 mesoporous silica catalysts, Bi/SBA‐15, with different Bi loadings were synthesized by a direct hydrothermal method. The materials were characterized in detail by various techniques. Powder‐X‐ray‐diffraction (PXRD), N2‐adsorption/desorption, and transmission‐electron‐microscopic (TEM) analyses revealed that the well‐ordered hexagonal structure of SBA‐15 is maintained after Bi incorporation. Diffuse‐reflectance UV/VIS, Raman, and X‐ray photoelectron spectroscopy (XPS) showed that the incorporated Bi‐atoms are highly dispersed, most of them entering the internal surface of SBA‐15. The new, very stable catalysts were found to be highly efficient for the oxidation of cyclohexane in a solvent‐free system, molecular oxygen (O2) being used as oxidant.  相似文献   

6.
An efficient one‐pot method for synthesis of 2,3‐dihydroquinazolin‐4(1H)‐ones and tri/tetra substituted‐1H‐imidazoles has been accomplished in the presence of catalytic amounts of Cu(I)‐1,3‐dimethylbarbituric acid modified SBA‐15 as heterogeneous catalyst with good to excellent yields. The catalyst is reusable and can be applied several times without any decrease in product yield. The synthesized catalyst was characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD), energy dispersive X‐ray spectroscopy (EDS), thermal gravimetric analysis (TGA), N2 adsorption/desorption isotherms (BET), Fourier transform infrared spectroscopy (FT‐IR) and atomic absorption spectroscopy (AAS).  相似文献   

7.
An isatin‐based fluorophore, 3‐(pyrimidin‐2‐ylimino)indolin‐2‐one, was grafted on a large‐pore mesoporous silica material (SBA‐15) via a two‐step modification process. The obtained material (SBA‐Is‐Py) was characterized using various techniques and the characterization showed that the ordered porous structure was preserved after the post‐grafting procedure. The optical sensing ability of SBA‐Is‐Py was studied upon the addition of a variety of metal ions and a marked fluorescence quenching by Hg2+ ion was observed. SBA‐Is‐Py exhibited excellent Hg2+‐specific luminescence quenching over various competing cations. Furthermore, linear changes of the optical properties of SBA‐Is‐Py as a function of the concentrations of Hg2+ ion were found, with a calculated detection limit of 3.28 × 10?7 M. In addition, SBA‐Is‐Py was successfully employed for the determination of Hg2+ in real water samples.  相似文献   

8.
《先进技术聚合物》2018,29(4):1322-1333
This work aims to develop novel composites from a poly(L ‐lactide‐co‐trimethylene carbonate‐co‐glycolide) (PLTG) terpolymer and mesoporous silica (SBA‐15) nanofillers surface modified by post‐synthetic functionalization. SBA‐15 first reacts with a silane coupling agent, γ‐aminopropyl‐trimethoxysilane to introduce ammonium group. PLLA chains were then grafted on the surface of SBA‐15 through ammonium initiated ring‐opening polymerization of L ‐lactide. Composites were prepared via solution mixing of PLTG terpolymer and surface modified SBA‐15. The structures and properties of pure SBA‐15, γ‐aminopropyl‐trimethoxysilane modified SBA‐15 (H2N‐SBA‐15), PLLA modified SBA‐15 (PLLA‐NH‐SBA‐15), and PLTG/PLLA‐NH‐SBA‐15 composites were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, transmission electron microscopy, N2 adsorption‐desorption, differential scanning calorimetry, contact angle measurement, and mechanical testing. The results demonstrated that PLLA chains were successfully grafted onto the surface of SBA‐15 with grafting amounts up to 16 wt.%. The PLTG/PLLA‐NH‐SBA‐15 composites exhibit good mechanical properties. The tensile strength, Young's modulus, and elongation at break of the composite containing 5 wt.% of PLLA‐NH‐SBA‐15 were 39.9 MPa, 1.3 GPa, and 273.6%, respectively, which were all higher than those of neat PLTG or of the composite containing 5 wt.% of pure SBA‐15. Cytocompatibility tests showed that the composites present very low cytotoxicity.  相似文献   

9.
The nanocomposite with polypyrrole (PPy) confined in ordered mesoporous silica SBA‐15 channels was synthesized by in situ electropolymerization. X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, N2 adsorption/desorption, and FT‐IR studies indicated that the nanocomposite has the well‐ordered hexagonal structures and PPy was in situ polymerized into the channels instead of the outer surface of SBA‐15. Furthermore, the PPy/SBA‐15 nanocomposite was used as an electrode modifier. We found that the nanocomposite‐modified electrode exhibited good electrocatalytic activities for hydroquinone oxidation where PPy chains could facilitate the electron transfer between molecular sieves and electrode surface. Three dihydroxybenzene isomers (hydroquinone, catechol and resorcinol) have been successfully detected at PPy/SBA‐15 modified electrode by preconcentration of the analyte.  相似文献   

10.
A simple, economical, and efficient approach to the one‐pot synthesis of 3‐methyl‐4‐aryl‐2,4,5,7‐tetrahydropyrazolo[3,4‐b]pyridine‐6‐ones by multicomponent assembling of 5‐methylpyrazol‐3‐amine, aldehydes, and Meldrum's acid using mesoporous silica phenylsulfonic acid (SBA‐15‐Ph‐SO3H) as recyclable and heterogonous solid acid nanocatalyst has been described. This protocol has the advantages of high yields, wide application scope, and an environmental benign procedure.  相似文献   

11.
A new approach was developed to fabricate nanowires of mixed oxides MoO3-V2O5 inside the channels of mesoporous silica SBA-15. The method involves functionalization of the channel surface of SBA-15 with aminosilane groups, immobilization of Keggin-type molybdovanadophosphoric acids through an acid-base interaction, and heat treatment. The immobilization of the heteropolyacid containing mixed addenda makes the molar ratio of the loaded components controllable. The formation of the MoO3-V2O5 nanowires inside the channels was monitored by variable temperature in situ XRD. The materials obtained by heat treatment at 400℃ for 5 h were characterized by TEM, N2-sorption measurements, laser Raman spectra and UV-Vis diffuse reflectance spectra. Further heat treatment of the MoO3-V2O5 nanowires inside the SBA-15 channels at higher temperature (700℃) destroys the framework integrity of SBA-15 by complete sublimation of MoO3 through the SBA-15 channel walls.  相似文献   

12.
A highly efficient and reusable molybdenum‐based catalyst has been synthesized by covalent grafting of a bis(phenol) diamine ligand, namely 2‐(((2‐bromoethyl)(2‐((3,5‐di‐tert‐butyl‐2‐hydroxybenzyl)amino)ethyl)amino)methyl)‐4,6‐di‐tert‐butylphenol, onto functionalized ordered mesoporous silica (SBA‐15) followed by complexation with MoO2(acac)2. The resulting organic–inorganic hybrid material was found to be a highly effective catalyst for oxygenation of various sulfides to their corresponding sulfoxides or sulfones. The catalyst was characterized using transmission and scanning electron microscopies, X‐ray photoelectron, Fourier transform infrared and atomic absorption spectroscopies, Brunauer–Emmett–Teller surface area analysis and thermogravimetric analysis. Mild reaction conditions, high selectivity and easy recovery and reusability of the catalyst render the presented protocol very useful for addressing industrial needs and environmental concerns.  相似文献   

13.
Using high‐resolution transmission electronic micrograph (HR‐TEM) observation, one can clearly see the pore geometry of the MCM‐41 and SBA‐15 mesoporous silicas to determine that their pore shapes are hexagonal and round, respectively. With the perpendicular orientations of the nanochannels to the electron beam, parallel line images of the (100) and (110) repeating spacings were observed. In the SBA‐15 mesoporous silicas, there are byproducts of the granular silica and disordered mesostructures, attributed to the weak hydrogen interactions between Pluronic 123 blockcopolymer and the silica species. There are also many different and significant +π disclination defects in SBA‐15 and MCM‐41 surfactant‐silica composites. The SBA‐15 with a thicker silica wall is more stable under irradiation by high‐energy electron beams compared to MCM‐41, which has thinner wall thickness. Some carbon nanostructure impurities were found in some carbon films on the metal grids.  相似文献   

14.
[RuLCl(p ‐cymene)] (L = N ‐arylsulfonylphenylenediamine) complexes ( 2 a – d ) were synthesized from the reaction between [Ru(p ‐cymene)Cl2]2 and ligand. Additionally, SBA‐15–[RuLCl(p ‐cymene)] derived catalysts ( 3 a – d ) were successfully immobilized onto mesoporous silica (SBA‐15) by an easily accessible approach. The structural elucidations of 2 a – d and 3 a – d were carried out with various methods such as 1H NMR, 13C NMR and infrared spectroscopies, elemental analysis, thermogravimetric/differential thermal analysis, nitrogen adsorption–desorption and scanning electron microscopy/energy‐dispersive X‐ray analysis. The Ru(II) complexes and materials were found to be highly active and selective catalysts for the transfer hydrogenation (TH) reaction of aldehydes and ketones. The influence of various 1,2‐phenylenediamines on the reactivity of the catalysts (complexes or materials) was studied and the catalysts ( 2 d and 3 d ) with a 4,5‐dichlorophenylenediamine substituent showed the best activity (the maximum turnover frequencies are 2916 and 2154 h−1 for TH of 4‐fluoroacetophenone, and 6000 and 4956 h−1 for TH of 4‐chlorobenzaldehyde).  相似文献   

15.
The reaction of lanthanide(III) nitrates with 4‐(pyridin‐2‐yl)methyleneamino‐1,2,4‐triazole (L) was studied. The compounds [Ln(NO3)3(H2O)3] ? 2 L, in which Ln=Eu ( 1 ), Gd ( 2 ), Tb ( 3 ), or Dy ( 4 ), obtained in a mixture of MeCN/EtOH have the same structure, as shown by XRD. In the crystals of these compounds, the mononuclear complex units [Ln(NO3)3(H2O)3] are linked to L molecules through intermolecular hydrogen‐bonding interactions to form a 2D polymeric supramolecular architecture. An investigation into the optical characteristics of the Eu3+‐, Tb3+‐, and Dy3+‐containing compounds ( 1 , 3 , and 4 ) showed that these complexes displayed metal‐centered luminescence. According to magnetic measurements, compound 4 exhibits single‐ion magnet behavior, with ΔEeff/kB=86 K in a field of 1500 Oe.  相似文献   

16.
A series of Keggin‐type heteropolyacid‐based heterogeneous catalysts (Co‐/Fe‐/Cu‐POM‐octyl‐NH3‐SBA‐15) were synthesized via immobilized transition metal mono‐ substituted phosphotungstic acids (Co‐/Fe‐/Cu‐POM) on octyl‐amino‐co‐functionalized mesoporous silica SBA‐15 (octyl‐NH2‐SBA‐15). Characterization results indicated that Co‐/Fe‐/Cu‐POM units were highly dispersed in mesochannels of SBA‐15, and both types of Brønsted and Lewis acid sites existed in Co‐/Fe‐/Cu‐POM‐octyl‐NH3‐SBA‐15 catalysts. Co‐POM‐octyl‐NH3‐SBA‐15 catalyst showed excellent catalytic performance in H2O2‐mediated cyclohexene epoxidation with 83.8% of cyclohexene conversion, 92.8% of cyclohexene oxide selectivity, and 98/2 of epoxidation/allylic oxidation selectivity. The order of catalytic activity was Co‐POM‐octyl‐NH3‐SBA‐15 > Fe‐POM‐octyl‐NH3‐SBA‐15 > Cu‐POM‐octyl‐NH3‐SBA‐15. In order to obtain insights into the role of ‐octyl moieties during catalysis, an octyl‐free catalyst (Co‐POM‐NH3‐SBA‐15) was also synthesized. In comparison with Co‐POM‐NH3‐SBA‐15, Co‐POM‐octyl‐NH3‐SBA‐15 showed enhanced catalytic properties (viz. activity and selectivity) in cyclohexene epoxidation. Strong chemical bonding between ‐NH3+ anchored on the surface of SBA‐15 and heteropolyanions resulted in excellent stability of Co‐POM‐octyl‐NH3‐SBA‐15 catalyst, and it could be reused six times without considerable loss of activity.  相似文献   

17.
Novel heterogeneous tungsten species in mesoporous silica SBA‐16 catalysts based on ship‐in‐a‐bottle methodology are originally reported for oxidizing cyclopentene (CPE) to glutaric acid (GAC) using hydrogen peroxide (H2O2). For all W‐SBA‐16 catalysts, isolated tungsten species and octahedrally coordinated tungsten oxide species are observed while WO3 crystallites are detected for the W‐SBA‐16 catalysts with Si/ W = 5, 10, and 20. The specific surface areas and the corresponding total pore volumes decrease significantly as increasing amounts of tungsten incorporated into the pores of SBA‐16. Using tungsten‐substituted mesoporous SBA‐16 heterogeneous catalysts, high yield of GAC (55%) is achieved with low tungsten loading (for Si/W = 30, ~13 wt%) for oxidation of CPE. The W‐SBA‐16 catalysts with Si/W = 30 can be reused five times without dramatic deactivation. In fact, low catalytic activity provided by bulk WO3 implies that the highly distributed tungsten species in SBA‐16 and the steric confinement effect of SBA‐16 are key elements for the outstanding catalytic performance.  相似文献   

18.
Herein, we report the preparation of zeolite NIR luminescence materials with a remarkable increase of luminescence intensity by attaching stopper molecule (an imidazolium salt) to the channel entrances of zeolite L loading with NIR lanthanide (Er3+ or Nd3+) β‐diketonate complexes. This results from the formation of Ln3+β‐diketonate complexes (Ln=Er or Nd) with high coordination numbers through the decreasing of the proton strength in the zeolite channels. The obtained materials were characterized with SEM and photoluminescence spectroscopy. We believe that this hybrid material will be an appealing candidate for the applications of optical fiber, telecommunications and bio‐imaging.  相似文献   

19.
A novel poly(aniline‐coo‐aminophenol) (PAOA)/mesoporous silica SBA‐15 nanocomposite was synthesized and investigated for adsorption of Hg (II) from aqueous solutions of wide pH range. A chemical oxidation method was employed for polymerization of aniline and o‐aminophenol on an ordered SBA‐15 template to obtain a significantly enlarged BET surface area of the adsorbent. Efficiency study revealed that the PAOA/SBA‐15 could reach a maximum Hg (II) adsorption capacity of over 400 mg/g. Kinetic study showed that the Hg (II) adsorption by the PAOA/SBA‐15 fitted a pseudo‐second‐order kinetic model, indicating that the mercury adsorption process was predominantly controlled by chemical process. The results of this study also proved that the adsorbed Hg (II) could be effectively desorbed from the PAOA/SBA‐15 in 0.1M HCl and 5% sulfocarbonide solutions. Associated adsorption mechanism was also investigated by means of Fourier transform infrared (FTIR) and X‐ray photoelectron spectroscopy (XPS) techniques. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The incorporation of sulfonate into mesoporous SBA‐15 molecular sieves as ligands for palladium ions was used. Then SBA‐15/PrSO3Pd and SBA‐15/PrSO3PdNP were prepared and applied for the Heck arylation reaction of conjugate alkenes with aryl halides, to afford corresponding cross‐coupling products under phosphine‐free aerobic conditions with good to excellent yields. These supported palladium pre‐catalysts could be separated easily from reaction products and reused several times, showing superiority over homogeneous catalysts for industrial and chemical applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号