首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two‐dimensional metal–organic nanostructures based on the binding of ketone groups and metal atoms were fabricated by depositing pyrene‐4,5,9,10‐tetraone (PTO) molecules on a Cu(111) surface. The strongly electronegative ketone moieties bind to either copper adatoms from the substrate or codeposited iron atoms. In the former case, scanning tunnelling microscopy images reveal the development of an extended metal–organic supramolecular structure. Each copper adatom coordinates to two ketone ligands of two neighbouring PTO molecules, forming chains that are linked together into large islands through secondary van der Waals interactions. Deposition of iron atoms leads to a transformation of this assembly resulting from the substitution of the metal centres. Density functional theory calculations reveal that the driving force for the metal substitution is primarily determined by the strength of the ketone–metal bond, which is higher for Fe than for Cu. This second class of nanostructures displays a structural dependence on the rate of iron deposition.  相似文献   

2.
3.
4.
The metalation behaviors of 5,15‐diphenylporphyrin (2H‐DPP) on Pd(111) and Cu/Pd(111) have been investigated using scanning tunneling microscopy and density functional calculations. We show that 2H‐DPP molecules deposited on Pd(111) surface form Pd‐DPP with a proportion of about 75% already at room temperature (RT). This is in contrast to non‐metalation adsorption of 2H‐DPP on Cu–Pd alloy at RT. Annealing to 323 K facilitates the metalation of 2H‐DPP on Cu–Pd alloy island. The comparison of the results indicates that the metalation of 2H‐DPP calls for both enough surface free energy of approaching N? H bond and enough reactivity of breaking N? H bond. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
6.
The reaction rate of the self‐metalation of free‐base tetraphenylporphyrins (TPPs) on Cu(111) increases with the number of cyano groups (n=0, 1, 2, 4) attached at the para positions of the phenyl rings. The findings are based on isothermal scanning tunneling microscopy (STM) measurements. At room temperature, all investigated free‐base TPP derivatives adsorb as individual molecules and are aligned with respect to densely packed Cu substrate rows. Annealing at 400 K leads to the formation of linear dimers and/or multimers via CN‐Cu‐CN bonds, accompanied by self‐metalation of the free‐base porphyrins following a first‐order rate equation. When comparing the non‐cyano‐functionalized and the tetracyano‐functionalized molecules, we find a decrease of the reaction rate by a factor of more than 20, corresponding to an increase of the activation energy from 1.48 to 1.59 eV. Density functional theory (DFT) calculations give insights into the influence of the peripheral electron‐withdrawing cyano groups and explain the experimentally observed effects.  相似文献   

7.
Like pearls on a string , molecular building blocks have been preorganized and then interlinked on a surface (see STM images). In this way both the supramolecular self‐assembly of the reactants as well as the subsequent thermal activation to release the protecting group are controlled.

  相似文献   


8.
9.
10.
Chiral molecular self‐assemblies were usually achieved using short‐range intermolecular interactions, such as hydrogen‐, metal–organic, and covalent bonding. However, unavoidable surface defects, such as step edges, surface reconstructions, or site dislocations may limit the applicability of short‐range chirality recognition. Long‐range chirality recognition on surfaces would be an appealing but challenging strategy for chiral reservation across surface defects at long distances. Now, long‐range chirality recognition is presented between neighboring 3‐bromo‐naphthalen‐2‐ol (BNOL) stripes on an inert Au(111) surface across the herringbone reconstruction as investigated by STM and DFT calculations. The key to achieving such recognition is the herringbone reconstruction‐induced local dipole accumulation at the edges of the BNOL stripes. The neighboring stripes are then forced to adopt the same chirality to create the opposite edged dipoles and neutralize the neighbored dipole moments.  相似文献   

11.
Organocobalt complexes represent a versatile tool in organic synthesis as they are important intermediates in Pauson–Khand, Friedel–Crafts, and Nicholas reactions. Herein, a single‐molecule‐level investigation addressing the formation of an organocobalt complex at a solid–vacuum interface is reported. Deposition of 4,4′‐(ethyne‐1,2‐diyl)dibenzonitrile and Co atoms on the Ag(111) surface followed by annealing resulted in genuine complexes in which single Co atoms laterally coordinated to two carbonitrile groups undergo organometallic bonding with the internal alkyne moiety of adjacent molecules. Alternative complexation scenarios involving fragmentation of the precursor were ruled out by complementary X‐ray photoelectron spectroscopy. According to density functional theory analysis, the complexation with the alkyne moiety follows the Dewar–Chatt–Duncanson model for a two‐electron‐donor ligand where an alkyne‐to‐Co donation occurs together with a strong metal‐to‐alkyne back‐donation.  相似文献   

12.
We investigated the adsorption of three related cyano-functionalized tetraphenyl porphyrin derivatives on Cu(111) by scanning tunneling microscopy (STM) in ultra-high vacuum (UHV) with the goal to identify the role of the cyano group and the central Cu atom for the intermolecular and supramolecular arrangement. The porphyrin derivatives studied were Cu-TCNPP, Cu-cisDCNPP, and 2H-cisDCNPP, that is, Cu-5,10,15,20-tetrakis-(p-cyano)-phenylporphyrin, Cu-meso-cis-di(p-cyano)-phenylporphyrin and 2H-meso-cis-di(p-cyano)-phenylporphyrin, respectively. Starting from different structures obtained after deposition at room temperature, all three molecules form the same long-range ordered hexagonal honeycomb-type structure with triangular pores and three molecules per unit cell. For the metal-free 2H-cisDCNPP, this occurs only after self-metalation upon heating. The structure-forming elements are pores with a distance of 3.1 nm, formed by triangles of porphyrins fused together by cyano-Cu-cyano interactions with Cu adatoms. This finding leads us to suggest that two cyano-phenyl groups in the “cis” position is the minimum prerequisite to form a highly ordered 2D porous molecular pattern. The experimental findings are supported by detailed density functional theory calculations to analyze the driving forces that lead to the formation of the porous hexagonal honeycomb-type structure.  相似文献   

13.
Cross‐coupling is of great importance in organic synthesis. Here it is demonstrated that cross‐coupling of aryl‐bromide and porphyrin‐bromide takes place on a Au(111) surface in vacuo. The products are oligomers consisting of porphyrin moieties linked by p‐phenylene at porphyrin’s meso‐positions. The ratio of the cross‐coupled versus homocoupled bonds can be regulated by the reactant concentrations. Kinetic Monte Carlo simulations were applied to determine the activation barrier. It is expected that this reaction can be employed in other aryl‐bromide precursors for designing alternating co‐polymers incorporating porphyrin and other functional moieties.  相似文献   

14.
Sulfur, a pollutant known to poison fuel‐cell electrodes, generally comes from S‐containing species such as hydrogen sulfide (H2S). The S‐containing species become adsorbed on a metal electrode and leave atomic S strongly bound to the metal surface. This surface sulfur is completely removed typically by oxidation with O2 into gaseous SO2. According to our DFT calculations, the oxidation of sulfur at 0.25 ML surface sulfur coverage on pure Pt(111) and Ni(111) metal surfaces is exothermic. The barriers to the formation of SO2 are 0.41 and 1.07 eV, respectively. Various metals combined to form bimetallic surfaces are reported to tune the catalytic capabilities toward some reactions. Our results show that it is more difficult to remove surface sulfur from a Ni@Pt(111) surface with reaction barrier 1.86 eV for SO2 formation than from a Pt@Ni(111) surface (0.13 eV). This result is in good agreement with the statement that bimetallic surfaces could demonstrate more or less activity than to pure metal surfaces by comparing electronic and structural effects. Furthermore, by calculating the reaction free energies we found that the sulfur oxidation reaction on the Pt@Ni(111) surface exhibits the best spontaneity of SO2 desorption at either room temperature or high temperatures.  相似文献   

15.
The adsorption behavior and the mobility of 2H-Tetranaphthylporphyrin (2HTNP) on Cu(111) was investigated by scanning tunneling microscopy (STM) at room temperature (RT). The molecules adsorb, like the structurally related 2HTPP, in the “inverted” structure with the naphthyl plane restricted to an orientation parallel to the Cu surface. The orientation of the four naphthyl groups yields altogether 16 possible conformations. Due to the existence of rotamer pairs, 10 different appearances are expected on the surface, and all of them are identified by STM at RT. Most interestingly, the orientation of the naphthyl groups significantly influences the diffusion behavior of the molecules on Cu(111). We identify three different groups of conformers, which are either immobile, medium or fast diffusing at RT. The mobility seems to decrease with increasing size of the footprint of the conformers on the surface.  相似文献   

16.
Scanning tunneling microscopy (STM) manipulation techniques have proven to be a powerful method for advanced nanofabrication of artificial molecular architectures on surfaces. With increasing complexity of the studied systems, STM manipulations are then extended to more complicated structural motifs. Previously, the dissociation and construction of various motifs have been achieved, but only in a single direction. In this report, the controllable scission and seamless stitching of metal–organic clusters have been successfully achieved through STM manipulations. The system presented here includes two sorts of hierarchical interactions where coordination bonds hold the metal–organic elementary motifs while hydrogen bonds among elementary motifs are directly involved in bond breakage and re‐formation. The key to making this reversible switching successful is the hydrogen bonding, which is comparatively facile to be broken for controllable scission, and, on the other hand, the directional characteristic of hydrogen bonding makes precise stitching feasible.  相似文献   

17.
A series of Pt(II) complexes with tetradentate luminophores has been designed, synthesized, and deposited on coinage metal surfaces with the aim to produce highly planar self‐assembled monolayers. Low‐temperature scanning tunneling microscopy (STM) and density functional theory (DFT) calculations reveal a significant initial nonplanarity for all complexes. A subsequent metal‐catalyzed separation of the nonplanar moiety at the bridging unit via the scission of a C?N bond is observed, leaving behind a largely planar core complex. The activation barrier of this bond scission process is found to depend strongly on the chemical nature of both bridging group and coordination plane, and to increase from Cu(111) through Ag(111) to Au(111).  相似文献   

18.
Behavior of large organic molecules equipped with spacer groups (Violet Landers, VL) on the TiO2(110)‐(1×1) surfaces is investigated by means of high‐resolution scanning tunneling microscopy (STM). Two distinct adsorption geometries are observed. We demonstrate that the molecule adsorption morphology can be alternated by well‐controlled STM tip‐induced manipulation. It is used to probe the mobility of molecules and reveals locking in one of the analyzed adsorption sites, thus allow to enhance or reduce the mobility along the [001] direction. Field induced hydrogen desorption is used to perform lateral STM manipulation on a hydroxyl‐free surface, which provides insight into the influence of surface hydroxyl groups on the molecule behavior. The ability to image with submolecular resolution both the central board and the spacer groups of the VL molecule is demonstrated.  相似文献   

19.
20.
Coadsorbed anions are well‐known to influence surface reactivity and dynamics at solid–liquid interfaces. Here we demonstrate that the chemical nature of these spectator species can entirely determine the microscopic dynamic behavior. Quantitative in situ video‐STM data on the surface diffusion of adsorbed sulfur atoms on Cu(100) electrodes in aqueous solution covered by bromide and chloride spectators, respectively, reveal in both cases a strong exponential potential dependence, but with opposite sign. This reversal is highly surprising in view of the isostructural adsorbate arrangement in the two systems. Detailed DFT studies suggest an anion‐induced difference in the sulfur diffusion mechanism, specifically an exchange diffusion on the Br‐covered surface. Experimental evidence for the latter is provided by the observation of Cu vacancy formation in the Br system, which can be rationalized by a side reaction of the sulfur exchange diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号