首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hybrid DFT/classical molecular dynamics of the long‐lived triplet excited state of [Ru(bpy)3]2+ (bpy=2,2′‐bipyridine) in aqueous solution is used to investigate the solvent‐mediated electron localization and dynamics in the triplet metal‐to‐ligand charge‐transfer (MLCT) state. Our studies reveal a solvent‐induced breaking of the coordination symmetry with consequent localization of the photoexcited electron on one or two bipyridine units for the entire length of our simulation, which amounts to several picoseconds. Frequent electronic “hops” between the ligands constituting the pair are observed with a characteristic time of approximately half a picosecond.  相似文献   

2.
3.
The excited‐state relaxation dynamics and chromophore interactions in two phthalocyanine compounds (bis‐ and trisphthalocyanines) are studied by using steady‐state and femtosecond transient absorption spectral measurements, where the excited‐state energy‐transfer mechanism is explored. By exciting phthalocyanine compounds to their second electronically excited states and probing the subsequent relaxation dynamics, a multitude of deactivation pathways are identified. The transient absorption spectra show the relaxation pathway from the exciton state to excimer state and then back to the ground state in bisphthalocyanine (bis‐Pc). In trisphthalocyanine (tris‐Pc), the monomeric and dimeric subunits are excited and the excitation energy transfers from the monomeric vibrationally hot S1 state to the exciton state of a pre‐associated dimer, with subsequent relaxation to the ground state through the excimer state. The theoretical calculations and steady‐state spectra also show a face‐to‐face conformation in bis‐Pc, whereas in tris‐Pc, two of the three phthalocyanine branches form a pre‐associated face‐to‐face dimeric conformation with the third one acting as a monomeric unit; this is consistent with the results of the transient absorption experiments from the perspective of molecular structure. The detailed structure–property relationships in phthalocyanine compounds is useful for exploring the function of molecular aggregates in energy migration of natural photosynthesis systems.  相似文献   

4.
A series of {(9,9‐dioctylfluorene)0.7?x‐(dibenzothiophene‐S,S‐dioxide)0.3‐[4,7‐bis(2‐thienyl)‐2,1,3‐benzothiadiazole]x} (PFS30‐TBTx), where x represents the minor percentage of the red emitter 4,7‐bis(2‐thienyl)‐2,1,3‐benzothiadiazole (TBT) randomly incorporated into the copolymer backbone, is investigated in order to follow the energy transfer from PFS30 to TBT moieties. The emission of the donor poly[(9,9‐dioctylfluorene)0.7‐(dibenzothiophene‐S,S‐dioxide)0.3 identified by PFS30 and peaking at 450 nm, is clearly quenched by the presence of the red TBT chromophore emitting at 612 nm, with an isoemissive point observed when the spectra are collected as a function of temperature. A plot of the ratio between the TBT and PFS30 emissions as a function of the reciprocal of temperature gives a clear linear trend between 290 and 200 K, with an activation energy of 20 meV and showing a turn over to a non‐activated regime below 200 K. Picosecond time‐resolved fluorescence decays collected at the PFS30 and TBT emission wavelengths, show a decay of the PFS30 emission and a fast build‐in, followed by a decay, of the TBT emission, confirming that the population of the TBT excited state occurs during the PFS30 lifetime(~600 ps). The population of the TBT excited state occurs on a time regime around 150 ps at 290 K, showing an energy barrier of 20 meV that turns over to a non‐activated regime below 200 K in clear agreement with the steady‐state data. The origin of the activation barrier is attributed to the presence of physical and energetic disorder, affected by fast thermal fluctuations that dynamically change the energy landscape and control the exciton migration through the polymer density of states.  相似文献   

5.
Metal azides have attracted increasing attention as precursors for synthesizing polymeric nitrogen. In this article, we report the amorphous polymerization of nitrogen by compressing cupric azide. The ab initio molecular dynamics simulations show that crystalline cupric azide transforms into a disordered network composed of singly bonded nitrogen at a hydrostatic pressure of 40 GPa and room temperature. The transformation manifests the formation of a π delocalization along the disordered Cu-N network, thus resulting in a semiconductor–metal transition. The estimated heat of formation of the amorphous polymeric nitrogen system is comparable to conventional high-energy-density materials. The amorphization provides an alternative route to the polymerization of nitrogen under moderate conditions.  相似文献   

6.
Ab initio calculations have been performed on a series of complexes formed between halogen-containing molecules and ammonia to gain a deeper insight into the nature of halogen bonding. It appears that the dihalogen molecules form the strongest halogen-bonded complexes with ammonia, followed by HOX; the charge-transfer-type contribution has been demonstrated to dominate the halogen bonding in these complexes. For the complexes involving carbon-bound halogen molecules, our calculations clearly indicate that electrostatic interactions are mainly responsible for their binding energies. Whereas the halogen-bond strength is significantly enhanced by progressive fluorine substitution, the substitution of a hydrogen atom by a methyl group in the CH(3)X...NH(3) complex weakened the halogen bonding. Moreover, remote substituent effects have also been noted in the complexes of halobenzenes with different para substituents. The influence of the hybridization state of the carbon atom bonded to the halogen atom has also been examined and the results reveal that halogen-bond strengths decrease in the order HC triple bond CX > H(2)C=CHX approximately O=CHX approximately C(6)H(5)X > CH(3)X. In addition, several excellent linear correlations have been established between the interaction energies and both the amount of charge transfer and the electrostatic potentials corresponding to an electron density of 0.002 au along the R-X axis; these correlations provide good models with which to evaluate the electron-accepting abilities of the covalently bonded halogen atoms. Finally, some positively charged halogen-bonded systems have been investigated and the effect of the charge has been discussed.  相似文献   

7.
The charge transport in organic materials, from molecular crystals to polymers, is determined by their degree of disorder. The dynamic disorder in ideal molecular crystals at room temperature and the static disorder in disordered polymers are just two limiting cases of the timescale of the fluctuations in the electronic Hamiltonian caused by nuclear motions. In fact, a very large number of important materials (e.g. liquid crystalline semiconductors) are actually in an intermediate regime where the disorder is neither purely static nor purely dynamic. This Minireview discusses the recent contribution of computational chemistry (molecular dynamics and quantum chemistry) to the characterization of these transport regimes and outlines the theoretical methods that can be used to relate the system characteristics to the measurable mobility.  相似文献   

8.
An experimental and theoretical investigation of rotational energy transfers (RET) of CH involving the B 2Σ? (v=0, 0≤N≤5, F) state by collisions with Ar is undertaken, using the photolysis‐probe technique. Time‐resolved laser‐induced fluorescence resulting from an initially prepared fine‐structure label is dispersed using a step‐scan Fourier transform spectrometer. The spin‐resolved RET rate constants are evaluated with the simulation of a kinetic model. The quantum‐scattering method is used for the calculation of the fine‐structure‐resolved cross sections and rate constants in the rotationally inelastic collisions. The theoretical values are generally consistent with our experimental findings, both in the order of magnitude and trend of N and ΔN dependence. The propensity rules obtained from the experiments are essentially obeyed by theoretical calculations, and are also in accordance with those reported by Kind and Stuhl. The RET rate constants obtained for the v=0 level are smaller than those obtained previously for v=1. The discrepancy in the RET behavior may be caused by an anisotropy difference of the interaction potential resulting from vibrational excitation.  相似文献   

9.
10.
Correlated ab initio as well as semiempirical quantum chemical calculations and molecular dynamics simulations were used to study the intercalation of cationic ethidium, cationic 5‐ethyl‐6‐phenylphenanthridinium and uncharged 3,8‐diamino‐6‐phenylphenanthridine to DNA. The stabilization energy of the cationic intercalators is considerably larger than that of the uncharged one. The dominant energy contribution with all intercalators is represented by dispersion energy. In the case of the cationic intercalators, the electrostatic and charge‐transfer terms are also important. The ΔG of ethidium intercalation to DNA was estimated at ?4.5 kcal mol?1 and this value agrees well with the experimental result. Of six contributions to the final free energy, the interaction energy value is crucial. The intercalation process is governed by the non‐covalent stacking (including charge‐transfer) interaction while the hydrogen bonding between the ethidium amino groups and the DNA backbone is less important. This is confirmed by the evaluation of the interaction energy as well as by the calculation of the free energy change. The intercalation affects the macroscopic properties of DNA in terms of its flexibility. This explains the easier entry of another intercalator molecule in the vicinity of an existing intercalation site.  相似文献   

11.
The ability to improve exciton diffusion lengths is a key issue in optimizing many opto‐electronic devices based on conjugated polymers. On the basis of quantum‐chemical calculations, we investigate a strategy consisting of extending the radiative lifetime of energy carriers through incorporation along the polymer backbone of repeating units with forbidden optical transition. The results obtained for poly(p‐phenylenebutadiyne), PPE, and poly(p‐triphenylenebutadiyne), PTPE, show that the larger number of hops performed by the electronic excitations during their lifetime in PTPE is compensated by the smaller hopping length (associated with the reduced conjugation length), so that similar on‐chain diffusion lengths are predicted in both polymers.  相似文献   

12.
High‐level ab initio and Born–Oppenheimer molecular dynamic calculations have been carried out on a series of hydroperoxyalkyl (α‐QOOH) radicals with the aim of investigating the stability and unimolecular decomposition mechanism into QO+OH of these species. Dissociation was shown to take place through rotation of the C?O(OH) bond rather than through elongation of the CO?OH bond. Through the C?O(OH) rotation, the unpaired electron of the radical overlaps with the electron density on the O?OH bond, and from this overlap the C=O π bond forms and the O?OH bond breaks spontaneously. The CH2OOH, CH(CH3)OOH, CH(OH)OOH, and α‐hydroperoxycycloheptadienyl radical were found to decompose spontaneously, but the CH(CHO)OOH has a decomposition energy barrier of 5.95 kcal mol?1 owing to its steric and electronic features. The systems studied in this work provide the first insights into how structural and electronic effects govern the stabilizing influence on elusive α‐QOOH radicals.  相似文献   

13.
The energy transfer pathways in lanthanide antenna probes cannot be comprehensively rationalized by the currently available models, and their elucidation remains to be a challenging task. On the basis of quantum-chemical ab initio calculations of representative europium antenna complexes, an innovative energy resonance model is proposed, which is controlled by an overall nonet–quintet intersystem crossing on the basis of spin–orbit coupling among the sublevels of the involved states.  相似文献   

14.
液体和非晶态NiAl3合金结构的从头算分子动力学模拟   总被引:4,自引:1,他引:3  
祝江波  李振华  乔明华  范康年 《化学学报》2004,62(22):2218-2222
应用从头算分子动力学方法模拟了液体以及淬冷形成的NiAl3合金体系,得到了它们的对相关函数、结构因子、键对分析信息.结果分析表明,在淬冷条件下得到的体系呈现非晶态性质,且非晶态结构类似于液态NiAl3合金的结构,可以用液体结构近似描述非晶态性质.还进行了电子结构分析,得到液体NiAl3合金的电子态密度和电荷分布.在液体镍铝合金中,镍为电子受体,部分电子由铝向镍转移,支持了Candy等人的XPS实验结果.镍铝间强烈作用,形成带有弱共价键性质的金属键.镍在合金中相当分散,这能部分解释由淬冷形成的NiAl3合金制得的骨架镍催化剂活性增强的原因.  相似文献   

15.
Fluoroform, as confirmed by both experimental and theoretical studies, can participate in improper H-bond formation, which is characterized by a noticeable increase in the fundamental stretching frequency nu(C-H) (so-called blue frequency shift), an irregular change of its integral intensity, and a C-H bond contraction. A Car-Parrinello molecular dynamics simulation was performed for a complex formed by fluoroform (F3CH) and deuterated methyl fluoride (FCD3) in liquid nitrogen. Vibrational analysis based on the Fourier transform of the dipole moment autocorrelation function reproduces the blue shift of the fundamental stretching frequency nu(C-H) and the decrease in the integral intensity. The dynamic contraction of the C-H bond is also predicted. The stoichiometry of the solvated, blue-shifted complexes and their residence times are examined.  相似文献   

16.
17.
18.
19.
The geometric and electronic structures of a series of conjugated macrocycles (phenylene-acetylene macrocycles, PAMs) have been studied theoretically with ab initio and semiempirical molecular orbital methods. The ab initio calculations at the HF/6-31G* level demonstrate that the model molecules may have a planar conformation. Bigger macrocycles, for example, 7PAM, 8PAM, and 9PAM, result in several energy minima. The boatlike conformation is the most energetically favored form. Based on the conformational analysis, a novel method for analyzing the ring-strain energy was proposed and used. In view of their potential applications as electronic materials, the electronic structures of a series of PAMs are also investigated. The LUMO-HOMO gaps of the planar PAMs show an odd-even difference behavior. In addition, the HOMOs of the planar species 3PAM, 5PAM, 7PAM, and 9PAM are doubly degenerated.  相似文献   

20.
In this work, the dynamic character of hydrogen-bond (H-bond) networks in two three-component crystals comprising polycationic chains was described. The first studied system was 1,4-diazabicyclo[2.2.2]octan-1-ium (DABCOH+) sulfamate monohydrate, known for its large negative linear compressibility. The second analyzed material was the newly obtained polar salt co-crystal: 1,4-diazabicyclo[2.2.2]octan-1-ium sulfamate urea. X-ray diffraction measurements enabled us to study the H-bond systems in both crystals using the graph set analysis. Obtained structures served as the initial models for Born-Oppenheimer molecular dynamics computations. A detailed study of intermolecular interactions and power spectra was conducted. The analysis of time and space correlations between the changes in H-bonds enabled the detection of proton transfer occurring in both systems at 300 K. Further study of those dynamic phenomena was done using the Energy Decomposition Analysis for selected trajectory fragments. Our work should improve the understanding of dielectric and ferroelectric properties of hybrid organic-inorganic materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号