首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The different courses of the interactions of cyclopentadienyl and arene derivatives of Group VI and VII transition metal carbonyl and transition complexes with Lewis acids, in solutions, have been studied by IR spectroscopy.The information of adducts involving the metal atom was observed for CpRe(CO)2L (L = CO, PR3) with SnCl4, SnBr4, TiCl4; AreneM(CO)3 (M = Cr, Mo, W) with SnCl4, TiCl4; and Ph3PC5H4M(CO)3 (M = Cr, Mo, W) with TiCl4 and AlCl3. Complexes CpM(CO)2NO and CpM(CO(NO)PPh3, depending on thier donor and acceptor nature, form adducts involving the oxygen atoms of CO or NO groups or the metal atom. CpCr(NO)2Cl reacts with Lewis acids via the chlorine atom. The relative basicity of the different sites in the complexes investigated is discussed.  相似文献   

2.
A high‐yielding synthetic route for the preparation of group 9 metallaboratrane complexes [Cp*MBH(L)2], 1 and 2 ( 1 , M=Rh, 2 , M=Ir; L=C7H4NS2) has been developed using [{Cp*MCl2}2] as precursor. This method also permitted the synthesis of an Rh–N,S‐heterocyclic carbene complex, [(Cp*Rh)(L2)(1‐benzothiazol‐2‐ylidene)] ( 3 ; L=C7H4NS2) in good yield. The reaction of compound 3 with neutral borane reagents led to the isolation of a novel borataallyl complex [Cp*Rh(L)2B{CH2C(CO2Me)}] ( 4 ; L=C7H4NS2). Compound 4 features a rare η3‐interaction between rhodium and the B‐C‐C unit of a vinylborane moiety. Furthermore, with the objective of generating metallaboratranes of other early and late transition metals through a transmetallation approach, reactions of rhoda‐ and irida‐boratrane complexes with metal carbonyl compounds were carried out. Although the objective of isolating such complexes was not achieved, several interesting mixed‐metal complexes [{Cp*Rh}{Re(CO)3}(C7H4NS2)3] ( 5 ), [Cp*Rh{Fe2(CO)6}(μ‐CO)S] ( 6 ), and [Cp*RhBH(L)2W(CO)5] ( 7 ; L=C7H4NS2) have been isolated. All of the new compounds have been characterized in solution by mass spectrometry, IR spectroscopy, and 1H, 11B, and 13C NMR spectroscopies, and the structural types of 4 – 7 have been unequivocally established by crystallographic analysis.  相似文献   

3.
The sequential reaction of the amino(trimethylsilyl)carbene complex [(CO)5W=C(NH2)C≡CSiMe3] ( 1 ) with nBuLi and [I‐Fe(CO)2Cp] affords the C(carbene)‐N bridged heterobinuclear complex [(CO)5W=C{NHFe(CO)2Cp}C≡CSiMe3] ( 2 ). Desilylation of 1 is achieved by treatment with KF in THF/MeOH. From the reaction of the resulting complex [(CO)5W=C(NH2)C≡CH] ( 3 ) with nBuLi and [I‐Fe(CO)2Cp] two binuclear WFe compounds in a ratio of approximately 1:1 are obtained: the C(carbene)‐C≡C bridged complex 4 and the C(carbene)‐N bridged complex 5 . Repetition of the deprotonation/metallation sequence yields the trinuclear WFe2 complex 6 . One Fe(CO)2Cp fragment in 6 is bonded to the amino group and the other one to the terminal carbon atom of the ethynyl substituent. The analogous reaction of 3 with nBuLi and [Br‐Ni(PMe2Ph)2Mes] gives a ca. 1:1 mixture of two heterobinuclear complexes ( 7 and 8 ). Complex 7 is bridged by the C(carbene)‐C≡C and complex 8 by the C(carbene)‐N fragment. Subsequent reaction of 7 with BuLi and [Br‐Ni(PMe2Ph)2Mes] finally affords the trinuclear WNi2 complex 9 related to 6 . The solid‐state structure of 2 is established by an X‐ray diffraction analysis. The spectroscopic data of the bi‐ and trinuclear complexes indicate electronic communication between the metal centers through the bridging group.  相似文献   

4.
In the compounds CpM(CO)3Et (M = Mo, W) the metal-ethyl σ-bond is photolabile. Upon irradiation of a solution of CpM(CO)3Et with UV light mainly [CpM(CO)3]2, CpM(CO)3H, ethane, and ethylene are produced. Formation of CpM(CO)3H is indicative of a β-elimination pathway for the photo-induced degradation. In the presence of trimethylphosphane (L) UV-irradiation of a solution of CpM(CO)3Et leads to the products Cp(CO)(L)2MM-(CO)3Cp, CpM(CO)2(L)Et and CpM(CO)2(L)H, while the thermal reaction produces the propionyl complexes CpM(CO)2(L)(COEt).  相似文献   

5.
A series of agostic σ‐borane/borate complexes have been synthesized and structurally characterized from simple borane adducts. A room‐temperature reaction of [Cp*Mo(CO)3Me], 1 with Li[BH3(EPh)] (Cp*=pentamethylcyclopentadienyl, E=S, Se, Te) yielded hydroborate complexes [Cp*Mo(CO)2(μ‐H)BH2EPh] in good yields. With 2‐mercapto‐benzothiazole, an N,S‐carbene‐anchored σ‐borate complex [Cp*Mo(CO)2BH3(1‐benzothiazol‐2‐ylidene)] ( 5 ) was isolated. Further, a transmetalation of the B‐agostic ruthenium complex [Cp*Ru(μ‐H)BHL2] ( 6 , L=C7H4NS2) with [Mn2(CO)10] affords a new B‐agostic complex, [Mn(CO)3(μ‐H)BHL2] ( 7 ) with the same structural motif in which the central metal is replaced by an isolobal and isoelectronic [Mn(CO)3] unit. Natural‐bond‐orbital analyses of 5–7 indicate significant delocalization of the electron density from the filled σB?H orbital to the vacant metal orbital.  相似文献   

6.
Homo- and heteronuclear bimetallic carbene complexes of group VII transition metals (Mn and Re), with cymantrene or cyclopentadienyl rhenium tricarbonyl as the starting synthon, have been synthesized according to classic Fischer methodology. Crystal structures of the carbene complexes with general formula [RC5H4 M'(CO)2{C(OEt)(C5H4 M(CO)3)}], where M = M′ = Mn, R = H (1), R = Me (2); M = Mn, M′ = Re, R = H (3); M = M′ = Re, R = H (4); and M = Re, M′ = Mn, R = H (5), are reported. A density functional theory (DFT) study was undertaken to determine natural bonding orbitals (NBOs) and conformational as well as isomeric aspects of the binuclear complexes. Application of second-order perturbation theory (SOPT) of the NBO method revealed stabilizing interactions between the methylene C–H bonds and the carbonyl ligands of the carbene metal moiety. Energy calculations in the gas phase of the cis and trans conformations of the Cp rings relative to one another are comparable, with the trans conformation slightly lower in energy. The theoretical findings have also been confirmed with single-crystal X-ray diffraction, and all solid-state structures are found in the trans geometry.  相似文献   

7.
The diiron frame Fe2Cp2CO2 allows the coordination of a variety of carbene ligands, including heteroatom substituted (Fischer type) and alkylidenes, in both bridging and terminal coordination modes. Synthetic strategies have been devised for obtaining aminocarbenes and thiocarbenes, by nucleophilic addition on the corresponding bridging amino- and thio-carbyne cationic complexes [Fe2(μ-CX)(μ-CO)(CO)2(Cp)2][SO3CF3] (X = SMe, NMe2, N(Me)Xyl), respectively. A more general approach to the synthesis of diiron complexes bridged by carbenes, exploits the electrophilic character of the sulphonium complex [Fe2{μ-C(CN)(SMe2)}(μ-CO)(CO)2(Cp)2][SO3CF3] and the facile displacement of the SMe2 moiety by nucleophiles. These methods afford a large variety of heteroatom (N, P, O, S) substituted carbene complexes and also μ-alkylidenes.Terminally bonded alkynyl methoxy carbene complexes have been obtained by the classical Fischer method, consisting in nucleophilic addition at a terminal CO, to generate an acyl intermediate, followed by oxygen atom methylation. The coordination to diiron cationic complexes makes the alkynylmethoxy carbene ligands very reactive towards the addition of nucleophiles, like amines and carbanions. These additions are regio- and stereoselective, occurring exclusively at the alkynyl moiety.Finally, new multidentate and functionalized bridging ligands are described. They are anchored to the diiron frame through an aminocarbene, or an alkylidene binding end, or both. These ligands result from intramolecular couplings and rearrangements which involve the μ-aminocarbyne, the terminally bonded nitrile ligands and acetylides.  相似文献   

8.
The linkage isomers CpM(CO)nSCN and CpM(CO)nNCS (Cp = η-C5H5; M = Fe, n = 2; M = Mo, n = 3) are interconverted by 366 nm irradiation in tetrahydrofuran solution at 30°C. Molybdenum and tungsten halide complexes CpM(CO)2-(PPh3)X undergo cistrans isomerization and disproportionation to CpM(CO)(PPh3)2X and CpM(CO)(PPh3)2X under similar conditions (benzene solution).  相似文献   

9.
The bonding modes of the ligand di‐2‐pyridyl ketoxime towards half‐sandwich arene ruthenium, Cp*Rh and Cp*Ir complexes were investigated. Di‐2‐pyridyl ketoxime {pyC(py)NOH} react with metal precursor [Cp*IrCl2]2 to give cationic oxime complexes of the general formula [Cp*Ir{pyC(py)NOH}Cl]PF6 ( 1a ) and [Cp*Ir{pyC(py)NOH}Cl]PF6 ( 1b ), for which two coordination isomers were observed by NMR spectroscopy. The molecular structures of the complexes revealed that in the major isomer the oxime nitrogen and one of the pyridine nitrogen atoms are coordinated to the central iridium atom forming a five membered metallocycle, whereas in the minor isomer both the pyridine nitrogen atoms are coordinated to the iridium atom forming a six membered metallacyclic ring. Di‐2‐pyridyl ketoxime react with [(arene)MCl2]2 to form complexes bearing formula [(p‐cymene)Ru{pyC(py)NOH}Cl]PF6 ( 2 ); [(benzene)Ru{pyC(py)NOH}Cl]PF6 ( 3 ), and [Cp*Rh{pyC(py)NOH}Cl]PF6 ( 4 ). In case of complex 3 the ligand coordinates to the metal by using oxime nitrogen and one of the pyridine nitrogen atoms, whereas in complex 4 both the pyridine nitrogen atoms are coordinated to the metal ion. The complexes were fully characterized by spectroscopic techniques.  相似文献   

10.
The novel complexes CpRe(CCHPh)(CO)2 and Cp2Re2(μ-CCHPh)(CO)4 containing a terminal and a bridging phenylvinylidene ligand respectively and the binuclear complex Cp(CO)2Re[CC(Ph)C(Ph)CH2]Re(CO)2Cp were obtained in the reaction of CpRe(CO)3 with PhCCH.According to an X-ray study of the latter complex the unusual bridging ligand is η1-bonded to one Re atom and η2-bonded to the other.  相似文献   

11.
Air‐ and moisture‐stable heterobimetallic tetrahedral clusters [Cp(CO)2MSiR]2 (M=Mo or W; R=SitBu3) were isolated from the reaction of N‐heterocyclic carbene (NHC) stabilized silyl(silylidene) metal complexes Cp(CO)2M=Si(SitBu3)NHC with a mild Lewis acid (BPh3). Alternatively, treatment of the NHC‐stabilized silylidene complex Cp(CO)2W=Si(SitBu3)NHC with stronger Lewis acids such as AlCl3 or B(C6F5)3 resulted in the reversible coordination of the Lewis acid to one of the carbonyl ligands. Computational investigations revealed that the dimerization of the intermediate metal silylidyne (M≡Si) complex to a tetrahedral cluster instead of a planar four‐membered ring is due to steric bulk.  相似文献   

12.
The binuclear alkoxycarbene complexes [M2(CO)9{C(OEt)C4H3Y}] (M = Mn, Y = S(1), O(2); Re, Y = S(3), O(4)) were synthesised and characterised, giving axial carbene ligands for the dimanganese complexes, and equatorial carbene ligands for the dirhenium complexes. Aminolysis of these complexes with ammonia and n-propylamine yielded complexes [M2(CO)9{C(NHR)C4H3Y}] (R = H, M = Mn, Y = S(5), O(6); Re, Y = S(7), O(8); R = propyl, M = Mn, Y = S(9), O(10); Re, Y = S(11), O(12)). For the smaller NH2-substituted carbene ligands, the X-ray structures determined showed equatorial carbene ligands for both dimanganese and dirhenium complexes, while the NHPr-substituted carbene complexes retained the original configurations of the precursor alkoxy carbene complex, indicating that the steric effects of both the M(CO)5-fragment and the carbene ligand substituent can affect the coordination site of the carbene ligands of Group VII transition metal complexes in the solid state.  相似文献   

13.
Addition of Cationic Lewis Acids [M′Ln]+ (M′Ln = Fe(CO)2Cp, Fe(CO)(PPh3)Cp, Ru(PPh3)2Cp, Re(CO)5, Pt(PPh3)2, W(CO)3Cp to the Anionic Thiocarbonyl Complexes [HB(pz)3(OC)2M(CS)] (M = Mo, W; pz = 3,5‐dimethylpyrazol‐1‐yl) Adducts from Organometallic Lewis Acids [Fe(CO)2Cp]+, [Fe(CO)(PPh3)Cp]+, [Ru(PPh3)2Cp]+, [Re(CO)5]+, [ Pt(PPh3)2]+, [W(CO)3Cp]+ and the anionic thiocarbonyl complexes [HB(pz)3(OC)2M(CS)] (M = Mo, W) have been prepared. Their spectroscopic data indicate that the addition of the cations occurs at the sulphur atom to give end‐to‐end thiocarbonyl bridged complexes [HB(pz)3(OC)2MCSM′Ln].  相似文献   

14.
Addition of 5,5‐diethylbarbituric acid (H2debarb, 1 ) to [CpCr(NO)2Cl], [Re(CO)5Br] or [(PPh3)Re(CO)4Br] in the presence of triethylamine and AgO3SCF3 (= AgOTf) resulted in the mono‐barbiturato complexes [CpCr(NO)2(Hdebarb)] ( 2 ), [PPh3Re(CO)4(Hdebarb)] ( 3 ) and [Re(CO)5(Hdebarb)] ( 4 ), respectively. Bis‐barbiturato complex [{(CO)5Re}2(debarb)] ( 5 ) with a doubly deprotonated barbiturate dianion formed when a molar ratio of metal complex to ligand of 2:1 was used. In the case of the rhenium complexes, AgO3SCF3 must be used additionally to cleave off bromide. All of the complexes were fully characterised by means of IR, mass and 1H, 13C and 31P NMR spectra and elemental analysis. In addition, their solid‐state structures were determined by single‐crystal X‐ray diffraction studies. The complexes exhibit distorted pseudo‐tetrahedral ( 2 ) or pseudo‐octahedral ( 3 – 5 ) configuration around the metal atom. In all complexes the ring system of the Hdebarb ligand is essentially planar.  相似文献   

15.
Heteronuclear Group 3 metal/iron carbonyl anion complexes ScFe(CO)3?, YFe(CO)3?, and LaFe(CO)3? are prepared in the gas phase and studied by mass‐selective infrared (IR) photodissociation spectroscopy as well as quantum‐chemical calculations. All three anion complexes are characterized to have a metal–metal‐bonded C3v equilibrium geometry with all three carbonyl ligands bonded to the iron center and a closed‐shell singlet electronic ground state. Bonding analyses reveal that there are multiple bonding interactions between the bare group‐3 elements and the Fe(CO)3? fragment. Besides one covalent electron‐sharing metal–metal σ bond and two dative π bonds from Fe to the Group 3 metal, there is additional multicenter covalent bonding with the Group 3 atom bonded to Fe and the carbon atoms.  相似文献   

16.
We report the development of a series of rhenium(I) polypyridine complexes appended with an electron‐rich diaminoaromatic moiety as phosphorogenic sensors for nitric oxide (NO). The diamine complexes [Re(N^N)(CO)3(py‐DA)][PF6] (py‐DA=3‐(N‐(2‐amino‐5‐methoxyphenyl)aminomethyl)pyridine; N^N=1,10‐phenanthroline (phen) ( 1 a ), 3,4,7,8‐tetramethyl‐1,10‐phenanthroline (Me4‐phen) ( 2 a ), 4,7‐diphenyl‐1,10‐phenanthroline (Ph2‐phen) ( 3 a )) have been synthesized and characterized. In contrast to common rhenium(I) diimines, these diamine complexes were very weakly emissive due to quenching of the triplet metal‐to‐ligand charge‐transfer (3MLCT) emission by the diaminoaromatic moiety through photoinduced electron transfer (PET). Upon treatment with NO, the complexes were converted into the triazole derivatives [Re(N^N)(CO)3(py‐triazole)][PF6] (py‐triazole=3‐((6‐methoxybenzotriazol‐1‐yl)methyl)pyridine; N^N=phen ( 1 b ), Me4‐phen ( 2 b ), Ph2‐phen ( 3 b )), resulting in significant emission enhancement (I/I0≈60). The diamine complexes exhibited high reaction selectivity to NO, and their emission intensity was found to be independent on pH. Also, these complexes were effectively internalized by HeLa cells and RAW264.7 macrophages with negligible cytotoxicity. Additionally, the use of complex 3 a as an intracellular phosphorogenic sensor for NO has been demonstrated.  相似文献   

17.
Carbon-13 NMR spectral data for complexes having the general formula CpM(CO)nX (Cp = η5-C5H5; M = Mo or W, n = 3; M = Fe, n = 2; X = halogen, methyl or acetyl) and their phosphine and isocyanide substitution products are reported. For CpM(CO)3X complexes two carbonyl resonances (1 : 2 ratio) are observed in all cases, consistent with the retention of the “piano-stool” geometries observed in the solid state. Substituted complexes CpM(CO)2(L)X (M = Mo or W; L = PR3 or cyclohexyl isocyanide) are unequivocally assigned cis or trans geometries on the basis of the number of observed carbonyl resonances and values of 2J(PC) for the phosphine substituted derivatives. Spectral data for [M(CO)5X]? (M = Cr, Mo or W; X = Cl, Br or I) and η7-C7H7Mo(CO)2X and the halide derivatives above generally show an increase in the shielding for carbonyls adjacent to the halide ligand in the order Cl < Br < I. Carbonyl resonances are more shielded in isostructural complexes in the order Cr < Mo < W (triad effect).  相似文献   

18.
A computational study of the interaction half‐sandwich metal fragments (metal = Re/W, electron count = d6), containing linear nitrosyl (NO+), carbon monoxide (CO), trifluorophosphine (PF3), N‐heterocyclic carbene (NHC) ligands with alkanes are conducted using density functional theory employing the hybrid meta‐GGA functional (M06). Electron deficiency on the metal increases with the ligand in the order NHC < CO < PF3 < NO+. Electron‐withdrawing ligands like NO+ lead to more stable alkane complexes than NHC, a strong electron donor. Energy decomposition analysis shows that stabilization is due to orbital interaction involving charge transfer from the alkane to the metal. Reactivity and dynamics of the alkane fragment are facilitated by electron donors on the metal. These results match most of the experimental results known for CO and PF3 complexes. The study suggests activation of alkane in metal complexes to be facile with strong donor ligands like NHC. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
An efficient method for the synthesis of the first N‐heterocyclic carbene (NHC)‐stabilized halosilylidyne complexes is reported that starts from SiBr4. In the first step, SiBr4 was treated with one equivalent of the N‐heterocyclic carbene 1,3‐bis[2,6‐bis(isopropyl)phenyl]imidazolidin‐2‐ylidene (SIdipp) to give the 4,5‐dihydroimidazolium salt [SiBr3(SIdipp)]Br ( 1‐Br ), which then was reduced with potassium graphite to afford the silicon(II) dibromide–NHC adduct SiBr2(SIdipp) ( 2‐Br ) in good yields. Heating 2‐Br with Li[CpCr(CO)3] afforded the complex [Cp(CO)2Cr?SiBr(SIdipp)] ( 3‐Br ) upon elimination of CO. Complex 3‐Br features a trigonal‐planar‐coordinated silicon center and a very short Cr?Si double bond. Similarly, the reaction of SiCl2(SIdipp) ( 2‐Cl ) with Li[CpCr(CO)3] gave the analogous chloro derivative [Cp(CO)2Cr?SiCl(SIdipp)] ( 3‐Cl ). Complex 3‐Br undergoes an NHC exchange with 1,3‐dihydro‐4,5‐dimethyl‐1,3‐bis(isopropyl)‐2H‐imidazol‐2‐ylidene (IMe2iPr2) to give the complex [Cp(CO)2CrSiBr(IMe2iPr2)2] ( 4‐Br ). Compound 4‐Br features a distorted‐tetrahedral four‐coordinate silicon center. Bromide abstraction occurs readily from 4‐Br with Li[B(C6F5)4] to give the putative silylidene complex salt [Cp(CO)2Cr?Si(IMe2iPr2)2][B(C6F5)4], which irreversibly dimerizes by means of an Si‐promoted electrophilic activation of one carbonyl oxygen atom to yield the dinuclear siloxycarbyne complex [Cp(CO)Cr{(μ‐CO)Si(IMe2iPr2)2}2‐ Cr(CO)Cp][B(C6F5)4]2 ( 5 ). All compounds were fully characterized, and the molecular structures of 2‐Br – 5‐Br were determined by single‐crystal X‐ray diffraction. DFT calculations of 3‐Br and 3‐Cl and their carbene dissociation products [Cp(CO)2Cr?Si? X] (X=Cl, Br) were carried out, and the electronic structures of 3‐Br , 3‐Cl and [Cp(CO)2Cr?Si? X] were analyzed by the natural bond orbital method in combination with natural resonance theory.  相似文献   

20.
Dimerization of the alkynylcarbene complex Cp(CO)(2)Re=C(Tol)C(triple bond)CCH(3) (8) occurs at 100 degrees C to give a 1.2:1 mixture of enediyne complexes [Cp(CO)(2)Re](2)[eta(2),eta(2)-TolC(triple bond)CC(CH(3))=C(CH(3))C(triple bond)CTol] (10-Eand 10-Z), showing no intrinsic bias toward trans-enediyne complexes. The cyclopropyl-substituted alkynylcarbene complex Cp(CO)(2)Re=C(Tol)C(triple bond)CC(3)H(5) (11) dimerizes at 120 degrees C to give a 5:1 ratio of enediyne complexes [Cp(CO)(2)Re](2)[eta(2),eta(2)-TolC(triple bond)C(C(3)H(5))C=C(C(3)H(5))C(triple bond)CTol] (12-E and 12-Z); no ring expansion product was observed. This suggests that if intermediate A formed by a [1,1.5] Re shift and having carbene character at the remote alkynyl carbon is involved, then interaction of the neighboring Re with the carbene center greatly diminishes the carbene character as compared with that of free cyclopropyl carbenes. The tethered bis-(alkynylcarbene) complex Cp(CO)(2)Re=C(Tol)C(triple bond)CCH(2)CH(2)CH(2)C(triple bond)CC(Tol)= Re(CO)(2)Cp (13) dimerizes rapidly at 12 degrees C to give the cyclic cis-enediyne complex [Cp(CO)(2)Re](2)[eta(2),eta(2)-TolC(triple bond)CC(CH(2)CH(2)CH(2))=CC(triple bond)CTol] (15). Attempted synthesis of the 1,8-disubstituted naphthalene derivative 1,8-[Cp(CO)(2)Re=C(Tol)C(triple bond)C](2)C(10)H(6) (16), in which the alkynylcarbene units are constrained to a parallel geometry, leads to dimerization to [Cp(CO)(2)Re](2)(eta(2),eta(2)-1,2-(tolylethynyl)acenaphthylene] (17). The very rapid dimerizations of both 13 and 16 provide compelling evidence against mechanisms involving cyclopropene intermediates. A mechanism is proposed which involves rate-determining addition of the carbene center of A to the remote alkynyl carbon of a second alkynylcarbene complex to generate vinyl carbene intermediate C, and rearrangement of C to the enediyne complex by a [1,1.5] Re shift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号